Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 62, Issue 3 (Sep 2017)

Issues

Structuraland antigenic analysis of a new Rhoptry Pseudokinase Gene (ROP54) in Toxoplasma gondii

Jian Zhou
  • Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gang Lu
  • Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lin Wang
  • Department of Ji Nan Children’s Hospital, 250022, Jinan, Shandong Province, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aihua H. Zhou
  • Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, Shandong University School of Medicine, 250021, Jinan, Shandong Province, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yali L. Han
  • Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jingjing J. Guo
  • Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pengxia X. Song
  • Department of Medicine, Quzhou College of Technology, Quzhou 324000, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Huaiyu Y. Zhou
  • Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hua Cong
  • Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ming Hou
  • Department of Hematology, Qilu Hospital, Shandong University, 250012, Jinan, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shenyi Y. He
  • Corresponding author
  • Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-05 | DOI: https://doi.org/10.1515/ap-2017-0061

Abstract

Toxoplasma gondii is defined as an obligate intracellular apicomplexan parasite and influences approximatelyone-third of the human all over the world. ROP54 protein is expressed in the rhoptry of Toxoplasma gondii. In the present study, we used SMART software to analyzethe secondary structure of ROP54. The 3D model of ROP54 protein was constructed and analyzed using SWISS-MODEL server and VMD software. The structure results fully showed that ROP54 proteinis an importantmember from the ROP family. Moreover, DNAMAN software and Epitope Database online service were used to analyze liner-B cell epitopes and Th-cell epitopes of the protein. The bioinformatics prediction of ROP54 protein could provide positive information on treatment and vaccine for toxoplasmosis. Furthermore, ROP54 gene was obtained from PCR, and a recombinant eukaryotic expression vector (pEGFP-ROP54) was constructed in the following study. After identification of enzyme digestion, the constructed plasmid was transfected into HEK 293-T cells. The RT-PCR result suggested that the recombinant plasmid could transcribe successfully in HEK 293-T cell.

Keywords: ROP54; secondary structures; constructed plasmids; Toxoplasma gondii

References

  • Alaganan A., Fentress S.J., Tang K., Wang Q., Sibley L.D. 2014. Toxoplasma GRA7 effector increases turnover of immunity-related GTPases and contributes to acute virulence in the mouse. Proceedings of the National Academy of Sciences USA, 111, 1126–1131. CrossrefGoogle Scholar

  • Bai Y., He S., Zhao G.H., Chen L., Shi N., Zhou H.Y., et al. 2012. Toxoplasma gondii: bioinformatics analysis, cloning and expression of a novel protein TgIMP1. Experimental Parasitology, 132, 458–464. CrossrefGoogle Scholar

  • Behnke M.S., Fentress S.J., Mashayekhi M., Li L.X., Taylor G.A., Sibley L.D. 2012. The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18. PLoS Pathogens, 8, e1002992. CrossrefGoogle Scholar

  • Boothroyd J.C., Grigg M.E. 2002. Population biology of Toxoplasma gondii and its relevance to human infection: do different strains cause different disease? Current Opinion in Microbiology, 5, 438–442. CrossrefGoogle Scholar

  • Bradley P.J., Ward C., Cheng S.J., Alexander D.L., Coller S., Coombs G.H., et al. 2005. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. Journal of Biological Chemistry, 280, 34245–34258. CrossrefGoogle Scholar

  • Butcher B.A., Fox B.A., Rommereim L.M., Kim S.G., Maurer K.J., Yarovinsky F., et al. 2011. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control. PLoS Pathogens, 7, e1002236. CrossrefGoogle Scholar

  • Carter J.M., Loomis-Price L. 2004. B cell epitope mapping using synthetic peptides. Current Protocols in Immunology, CrossrefGoogle Scholar

  • Cong H., Gu Q.M., Yin H.E., Wang J.W., Zhao Q.L., Zhou H.Y., et al.2008. Multi-epitope DNA vaccine linked to the A2/B subunit of cholera toxin protect mice against Toxoplasma gondii. Vaccine, 26, 3913–3921. CrossrefGoogle Scholar

  • Constant S., Pfeiffer C., Woodard A., Pasqualini T., Bottomly K. 1995. Extent of T cell receptor ligation can determine the functional differentiation of native CD4+ T cells. The Journal of Experimental Medicine, 182, 1591–1596. CrossrefGoogle Scholar

  • Elliot W. Kim., Santhosh M. Nadipuram., Ashley L. Tetlow., William D. Barshop., et al. 2016. The Rhoptry Pseudokinase ROP54 Modulates Toxoplasma gondii Virulence and Host GBP2 Loading. Msphere, 1, e00045–16. CrossrefGoogle Scholar

  • Ferra B., Holec-Gąsior L., Kur J. 2015. A new Toxoplasma gondiichimeric antigen containing fragments of SAG2, GRA1, andimpact of immunodominant sequences size on its diagnostic usefulness. Parasitology Research, 114, 3291–3299. CrossrefGoogle Scholar

  • Gao J., Faraggi E., Zhou Y., Ruan J., Kurgan L. 2012. BEST: improved prediction of B-cell epitopes from antigen sequences. PLoS One, 7, e40104 p. CrossrefGoogle Scholar

  • Gershoni JM., Stern B., Denisova G.1997. Combinatorial libraries, epitope structure and the prediction of protein conformations. Immunology Today, 18, 108–110. CrossrefGoogle Scholar

  • Guex N., Peitsch MC., Schwede T. 2009. Automated comparative protein structure modeling with SWISS-MODEL and Swiss- Pdb Viewer: a historical perspective. Electrophoresis, 30, S162–S173. CrossrefGoogle Scholar

  • Guex N., Peitsch N.C. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling.Electrophoresis, 18, 2714–2723. CrossrefGoogle Scholar

  • Hakansson S., Charron A.J., Sibley L.D. 2001. Toxoplasma evacuoles: atwo-step process of secretion and fusion forms the parasitophorous vacuole. The EMBO Journal, 20, 3132–3144. CrossrefGoogle Scholar

  • Hwang S., Khan I.A.2015. CD8+ T cell immunity in an encephalitis model of Toxoplasma gondii infection. SEMINARS IN IMMUNOPATHOLOGY, 37, 271–279. CrossrefGoogle Scholar

  • Kopp J., Schwede T. 2006. The SWISS-MODEL Repository: new features and functionalities. Nucleic Acids Research, 34, 315–318. CrossrefGoogle Scholar

  • Kyte J., Doolittle R.F. 1982. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157, 105–132. CrossrefGoogle Scholar

  • Liu K.Y., Zhang D.B., Wei Q.K., Li J., Li G.P., Yu J.Z. 2006. Biological role of surface Toxoplasma gondii antigen in development of vaccine. World Journal of Gastroenterology, 12, 2363–2368. CrossrefGoogle Scholar

  • Nielsen H.V., Lauemoller S.L., Christiansen L., Buus S., Fomsgaard A., Petersen E. 1999. Complete protection against lethal Toxoplasma gondii infection in mice immunized with a plasmid encoding the SAG1 gene. Infection and Immunity, 67, 6358–6363. CrossrefGoogle Scholar

  • Ong Y.C., Reese M.L., Boothroyd J.C. 2010. Toxoplasma rhoptry protein16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6. Journl of Biological Chemistry, 285, 28731–28740. CrossrefGoogle Scholar

  • Romano P., Giugno R., Pulvirenti A. 2011. Tools and collaborative environments for bioinformatics research. Briefings in Bioinformatics, 12, 549–561. CrossrefGoogle Scholar

  • Siachoque H., Guzman F., Burgos J., Patarroyo M.E., Gomez Marin J.E. 2006. Toxoplasma gondii: immunogenicity and protection by P30 peptides in a murine model. Experimental Parasitology, 114, 62–65. CrossrefGoogle Scholar

  • Subramani A., Floudas C.A. 2012. Structure prediction of loops with fixed and flexible stems. The Journal of Physical Chemistry B, 116, 6670–6682.CrossrefGoogle Scholar

  • Tong J.C., Tammi M.T. 2008. Prediction of protein allergenicity using local description of amino acid sequence. Frontiers in Bioscience Landmark, 13, 6072–6087. CrossrefGoogle Scholar

  • Van Regenmortel MH. 2009. What is a B-cell epitope?. Methods in Molecular Biology, 524, 3–20. CrossrefWeb of ScienceGoogle Scholar

  • Wang Y.H., Wang G.X., Ou J.T., Yin H., Zhang D.L. 2014. Analyzing and identifying novel B cell epitopes within Toxoplasma gondii GRA4. Parasites & Vectors, 7, 474. https://dx.doi.org/10.1186/s13071-014-0474-xCrossref

  • Wang Y.H., Wang M., Wang G.X., Pang A.N., Fu B.Q., Yin H., et al.2011. Increasedsurvival time in mice vaccinated with a branched lysine multipleantigenic peptide containing B- and T-cell epitopes from T. gondii antigens. Vaccine, 29, 8619–8623. CrossrefGoogle Scholar

  • Welling G.W., Weijer W.J., Van der Zee R., Welling-Wester S. 1985. Prediction of sequential antigenic regions in proteins. FEBS Letters, 188, 215–218. CrossrefGoogle Scholar

  • Yamamoto M., Standley D.M., Takashima S., Saiga H., Okuyama M., Kayama H., et al. 2009. A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation ofStat3. Journal of Experimental Medicine, 206, 2747–2760. CrossrefGoogle Scholar

  • Yuan Z.G., Zhang X.X., He X.H., Petersen E., Zhou D.H., He Y., et al.2011. Protective immunity induced by Toxoplasma gondii rhoptry protein 16 against toxoplasmosis in mice. Clinical and Vaccine Immunology, 18, 119–124. CrossrefGoogle Scholar

  • Yuan Z.G., Zhang X.X., Lin R.Q., Petersen E., He S., Yu M., et al.2011. Protective effect against toxoplasmosis in mice induced by DNA immunization with gene encoding Toxoplasma gondii ROP18. Vaccine, 29, 6614–6619. CrossrefGoogle Scholar

  • Zhang T.E., Yin L.T., Li R.H., Wang H.L., Meng X.L., Yin G.R. 2015. Protective immunity induced by peptides ofAMA1, RON2 and RON4 containing T-and B-cellepitopes via an intranasal route against toxoplasmosis in mice. Parasites & Vectors, 8, 15. CrossrefGoogle Scholar

About the article

Jian Zhou and Gang Lu equally contributed to this paper and should be considered as first co-authors


Received: 2016-10-19

Revised: 2017-03-10

Accepted: 2017-03-27

Published Online: 2017-07-05

Published in Print: 2017-09-26


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0061.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in