Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 62, Issue 3 (Sep 2017)

Issues

A PCR survey of vector-borne pathogens in different dog populations from Turkey

Huanping Guo
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ferda Sevinc / Onur Ceylan / Mutlu Sevinc / Ege Ince / Yang Gao
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paul Franck Adjou Moumouni
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mingming Liu
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Artemis Efstratiou
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guanbo Wang
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shinuo Cao
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mo Zhou
  • Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Charoonluk Jirapattharasate
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aaron Edmond Ringo
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Weiqing Zheng
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xuenan Xuan
  • Corresponding author
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-05 | DOI: https://doi.org/10.1515/ap-2017-0064

Abstract

In the present study, a total of 192 blood samples were collected from pet dogs, kennel dogs and shepherd dogs in Konya district, Turkey, and tested by specific PCR for the presence of vector-borne pathogens. Several pathogens were identified, most of which can cause substantial morbidity in dogs. PCR results revealed that 54 (28.1%) dogs were infected with one or more pathogens. Positive results were obtained for Babesia spp. in 4 dogs (2.1%), Hepatozoon spp. in 8 dogs (4.2%) and Mycoplasma spp. in 46 dogs (24%). Three dogs (1.6%) were infected with two or three pathogens. The sequence analysis of the positive DNA samples revealed the presence of Babesia canis vogeli, Hepatozoon canis, Hepatozoon sp. MF, Mycoplasma haemocanis and Candidatus Mycoplasma haematoparvum. Ehrlichia canis and Anaplasma platys were not detected. Regardless of ownership status, vector-borne diseases were common in these dog populations. There was significant difference of pathogen prevalence among the different dog populations. Mycoplasma spp. was more frequent in the kennel dogs (31.9%) than in the pet (21.4%) and shepherd dogs (13.8%). Additionally, the frequency of Babesia spp. and Hepatozoon spp. was higher in the shepherd dogs which account for three quarters and half of the total number of Babesia spp. and Hepatozoon spp., respectively. To our knowledge, this is the first report of Mycoplasma infection in dogs in Turkey. The results of the present study provide a foundation for understanding the epidemiology of canine vector-borne diseases (CVBDs), and for strategies to control these diseases in Turkey.

Keywords: Dog; Babesia spp.; Hepatozoon spp.; Mycoplasma spp.; PCR; Turkey

References

  • Abd Rani P.A., Irwin P.J., Coleman G.T., Gatne M., Traub R.J. 2011. A survey of canine tick-borne diseases in India. Parasites & Vectors, 4, 141. CrossrefGoogle Scholar

  • Aktas M., Ozübek S., Ipek D.N. 2013. Molecular investigations of Hepatozoon species in dogs and developmental stages of Rhipicephalus sanguineus. Parasitology Research, 112, 2381–2385. CrossrefGoogle Scholar

  • Aktas M. 2014. A survey of ixodid tick species and molecular identification of tick-borne pathogens. Veterinary Parasitology, 200, 276–283. CrossrefGoogle Scholar

  • Aktas M., Özübek S., Altay K.,İ., Utuk AE., Kirbas A., Şimsek S., Dumanlı N. 2015a. A molecular and parasitological survey of Hepatozoon canis in domestic dogs in Turkey. Veterinary Parasitology, 209, 264–267. CrossrefGoogle Scholar

  • Aktas M., Özübek S., Altay K., Ipek N.D., Balkaya İ., Utuk A.E., Kirbas A., Şimsek S., Dumanli N. 2015b. Molecular detection of tick-borne rickettsial and protozoan pathogens in domestic dogs from Turkey. Parasites & Vectors, 14, 8, 157. CrossrefGoogle Scholar

  • Aydin M.F., Sevinc F., Sevinc M. 2015. Molecular detection and characterization of Hepatozoon spp. in dogs from the central part of Turkey. Ticks and Tick-Borne Diseases, 6, 388–392.CrossrefGoogle Scholar

  • Aysul N. 2006. Comparison of microscopic and PCR-RLB findings in detection of Babesia species of dogs in Istanbul. PhD Thesis, Istanbul University, Institute of Health Science, Parasitology Department, Istanbul, TurkeyGoogle Scholar

  • Aysul N., Ural K., Ulutas B., Eren H., Karagenc T. 2013. First detection and molecular identification of Babesia gibsoni in two dogs from the Aydin Province of Turkey. Turkish Journal of Veterinary & Animal Sciences, 37, 226–229Google Scholar

  • Baneth G. 2011. Perspectives on canine and feline hepatozoonosis. Veterinary Parasitology, 181, 3–11. .CrossrefGoogle Scholar

  • Boozer A.L., Macintire D.K. 2003. Canine babesiosis. Veterinary Clinics of North America: Small Animal Practice, 33, 885–904.Google Scholar

  • Cetinkaya H., Haktanir D., Arun S., Vurusaner C. 2016. Molecular detection and prevalence of feline hemotropic mycoplasmas in Istanbul, Turkey. Acta Parasitologica, 61, 165–171. CrossrefGoogle Scholar

  • Colwell D.D., Dantas-Torres F., Otranto, D. 2011. Vector-borne parasitic zoonoses: emerging scenarios and new perspectives. Veterinary Parasitology, 182, 14–21. CrossrefGoogle Scholar

  • Compton S.M., Maggi R.G., Breitschwerdt E.B. 2012. Candidatus Mycoplasma haematoparvum and Mycoplasma haemocanis infections in dogs from the United States. Comparative Immunology, Microbiology and Infectious Diseases, 35, 557–562. .CrossrefGoogle Scholar

  • Conrado Fde O., do Nascimento N.C., dos Santos A.P., Zimpel C.K., Messick J.B., Biondo, A.W. 2015. Occurrence and identification of hemotropic mycoplasmas (Hemoplasmas) in free ranging and laboratory rats (Rattus norvegicus) from two Brazilian zoos. BMC Veterinary Research, 11, 286. CrossrefGoogle Scholar

  • Cook S., Swann J.W. 2016. Canine babesiosis: autochthonous today, endemic tomorrow? The Veterinary Record, 178, 417–419. CrossrefGoogle Scholar

  • Criado-Fornelio A., Martinez-Marcos A., Buling-Saraña A., Barba- Carretero J.C. 2003. Presence of Mycoplasma haemofelis, Mycoplasma haemominutum and piroplasmids in cats from southern Europe: a molecular study. Veterinary Microbiology, 93, 307–317Google Scholar

  • Dantas-Torres F. 2008a. Canine vector-borne diseases in Brazil. Parasites & Vectors, 1, 25. CrossrefGoogle Scholar

  • Dantas-Torres F. 2008b. The brown dog tick, Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae): from taxonomy to control. Veterinary Parasitology, 152, 173–185. CrossrefGoogle Scholar

  • Dantas-Torres F., Figueredo L.A. 2006. Canine babesiosis: a Brazilian perspective. Veterinary Parasitology, 141, 197–203Google Scholar

  • Dantas-Torres F., Otranto D. 2016. Best Practices for Preventing Vector-Borne Diseases in Dogs and Humans. Trends in Parasitology, 32, 43–55. .CrossrefGoogle Scholar

  • Dong J., Olano J.P., McBride J.W., Walker D.H. 2008. Emerging pathogens: challenges and successes of molecular diagnostics. The Journal of Molecular Diagnostics, 10, 185–197. CrossrefGoogle Scholar

  • Gökçe E., Kirmizigül A.H., Taşci G.T., Uzlu E., Gündüz N., Vatansever Z. 2013. The first time clinical and parasitological determination of Babesia canis in dogs in Turkey. The Journal of the Faculty of Veterinary Medicine, University of Kafkas, 19, 717–720Google Scholar

  • Gulanber A., Gorenflot A., Schetters T.P., Carcy B. 2006. First molecular diagnosis of Babesia vogeli in domestic dogs from Turkey. Veterinary Parasitology, 139, 224–230Google Scholar

  • Hii S.F., Traub R.J., Thompson M.F., Henning J., O’Leary C.A., Burleigh A., et al. 2015. Canine tick-borne pathogens and associated risk factors in dogs presenting with and without clinical signs consistent with tick-borne diseases in northern Australia. Australian Veterinary Journal, 93, 58–66. CrossrefGoogle Scholar

  • Hornok S., Tánczos B., Fernández de Mera I.G., de la Fuente J., Hofmann-Lehmann R., Farkas R., 2013. High prevalence of Hepatozoon-infection among shepherd dogs in a region considered to be free of Rhipicephalus sanguineus. Veterinary Parasitology, 196, 189–193. CrossrefGoogle Scholar

  • Inokuma H., Brouqui P., Drancourt M., Raoult D. 2001. Citrate synthase gene sequence: a new tool for phylogenetic analysis and identification of Ehrlichia. Journal of Clinical Microbiology, 39, 3031–3039CrossrefGoogle Scholar

  • Inokuma H., Fujii K., Okuda M., Onishi T., Beaufils J.P., Raoult D., Brouqui P. 2002a. Determination of the nucleotide sequence of heat shock operon groESL and the citrate synthase gene (gltA) of Anaplasma (Ehrlichia) platys for phylogenetic and diagnostic studies. Clinical and Diagnostic Laboratory Immunology, 9, 1132–1136Google Scholar

  • Inokuma H., Okuda M., Ohno K., Shimoda K., Onishi T. 2002b. Analysis of the 18S rRNA gene sequence of a Hepatozoon detected in two Japanese dogs. Veterinary Parasitology, 106, 265–271Google Scholar

  • Irwin P.J. 2009. Canine babesiosis: from molecular taxonomy to control. Parasites & Vectors, 2, S4. CrossrefGoogle Scholar

  • Kenny M.J., Shaw S.E., Beugnet F., Tasker S. 2004. Demonstration of two distinct hemotropic Mycoplasmas in French dogs. Journal of Clinical Microbiology, 42, 5397–5399Google Scholar

  • Koc S., Aydin L., Cetin H. 2015. Tick species (Acari: Ixodida) in Antalya City, Turkey: species diversity and seasonal activity. Parasitology Research, 114, 2581–2586. CrossrefGoogle Scholar

  • Kordick S.K., Breitschwerdt E.B., Hegarty B.C., Southwick K.L., Colitz C.M., Hancock S.I., Bradley J.M., et al. 1999. Coinfection with multiple tick-borne pathogens in a Walker Hound kennel in North Carolina. Journal of Clinical Microbiology, 37, 2631–2638Google Scholar

  • Little S.E., Allen K.E., Johnson E.M., Panciera R.J., Reichard M.V., Ewing S.A. 2009. New developments in canine hepatozoonosis in North America: a review. Parasites & Vectors, 2 (Suppl. 1), S5. CrossrefGoogle Scholar

  • Liu M., Ruttayaporn N., Saechan V., Jirapattharasate C., Vudriko P., Moumouni P.F., et al. 2016. Molecular survey of canine vector-borne diseases in stray dogs in Thailand. Parasitology International, 65, 357–361. CrossrefGoogle Scholar

  • Lobetti R.G. 1998. Hyperreninaemic hypoaldosteronism in a dog. Journal of the South African Veterinary Association, 69, 33–35Google Scholar

  • Lorusso V., Dantas-Torres F., Lia R.P., Tarallo V.D., Mencke N., Capelli G., Otranto D. 2010. Seasonal dynamics of the brown dog tick, Rhipicephalus sanguineus, on a confined dog population in Italy. Medical and Veterinary Entomology, 24, 309–315. CrossrefGoogle Scholar

  • Messick J.B. 2003. New perspectives about Hemotrophic mycoplasma (formerly, Haemobartonella and Eperythrozoon species) infections in dogs and cats. The Veterinary Clinics of North America. Small Animal, 33, 1453–1465CrossrefGoogle Scholar

  • Metwally M.A., Yassin A.S., Essam T.M., Hamouda H.M., Amin M.A. 2014. Detection, characterization, and molecular typing of human Mycoplasma spp. from major hospitals in Cairo, Egypt. The Scientific World Journal, 2014, 549858. CrossrefGoogle Scholar

  • Novacco M., Meli M.L., Gentilini F., Marsilio F., Ceci C., Pennisi M.G., et al. 2010. Prevalence and geographical distribution of canine hemotropic mycoplasma infection in Mediterranean countries and analysis of risk factors for infection. Veterinary Microbiology, 142, 276–284. CrossrefGoogle Scholar

  • Ongor H., Kalin R., Karahan M., Cetinkaya B., McAuliffe L., Nicholas R.A.J. 2008. Isolation of Mycoplasma bovis from broiler chickens in Turkey. Avian Pathology: Journal of The World Veterinary Poultry Association, 37, 587–588. CrossrefGoogle Scholar

  • Ongor H., Kalin R., Karahan M., Çetinkaya B., Akan M. 2009. Detection of mycoplasma species in turkeys by culture and polymerase chain reaction. Revue Scientifique et Technique (International Office of Epizootics), 28, 3, 1103–1109Google Scholar

  • Otranto D., Dantas-Torres F., Breitschwerdt E.B. 2009. Managing canine vector-borne diseases of zoonotic concern: part two. Trends in Parasitology, 25, 228–235. CrossrefGoogle Scholar

  • Pantchev N., Pluta S., Huisinga E., Nather S., Scheufelen M., Vrhovec M.G., et al. 2015. Tick-borne Diseases (Borreliosis, Anaplasmosis, Babesiosis) in German and Austrian Dogs: Status quo and Review of Distribution, Transmission, Clinical Findings, Diagnostics and Prophylaxis. Parasitology Research, 114, 19–54. CrossrefGoogle Scholar

  • Passos L.M., Geiger S.M., Ribeiro M.F., Pfister K., Zahler-Rinder M. 2005. First molecular detection of Babesia vogeli in dogs from Brazil. Veterinary Parasitollgy, 127, 81–85Google Scholar

  • Sayin Z., Sakmanoglu A., Uçan U.S., Uslu A., Hadimli H.H., Aras Z., et al. 2016. Mycoplasma infections in dairy cattle farms in Turkey. Turkish Jounal of Veterinary and Animal Sciences- Academic Journal, 40, 1–6Google Scholar

  • Seneviratna P., Weerasinghe Ariyadasa S. 1973. Transmission of Haemobartonella canis by the dog tick, Rhipicephalus sanguineus. Research in Veterinary Science, 14, 112–114Google Scholar

  • Singla L.D., Sumbria D., Mandhotra A., Bal M.S., Kaur P. 2016. Critical analysis of vector-borne infections in dogs: Babesia vogeli, Babesia gibsoni, Ehrlichia canis and Hepatozoon canis in Punjab, India. Acta Parasitologica, 61, 697–706. CrossrefGoogle Scholar

  • Uilenberg G. 2006. Babesia – a historical overview. Veterinary Parasitology, 138, 3–10Google Scholar

  • Valle Sde F., Messick J.B., Dos Santos A.P., Kreutz L.C., Duda N.C., Machado G., et al. 2014. Identification, occurrence and clinical finding of canine hemoplasmas in southern Brazil. Comparative Immunology, Microbiology and Infectious Diseases, 37, 259–265. CrossrefGoogle Scholar

  • Vojta L., Mrljak V., Curkovic S., Zivicnjak T., Marinculic A., Beck R. 2009. Molecular epizootiology of canine hepatozoonosis in Croatia. International Journal of Parasitology, 39, 1129–1136. CrossrefGoogle Scholar

  • Wei L., Kelly P., Ackerson K., El-Mahallawy H.S., Kaltenboeck B., Wang C. 2014. Molecular detection of Dirofilaria immitis, Hepatozoon canis, Babesia spp., Anaplasma platys and Ehrlichia canis in dogs on Costa Rica. Acta Parasitologica, 60, 21–25. CrossrefGoogle Scholar

  • Wengi N., Willi B., Boretti F.S., Cattori V., Riond B., Meli M.L., et al. 2008. Real-time PCR-based prevalence study, infection follow-up and molecular characterization of canine hemotropic mycoplasmas. Veterinary Microbioloy, 126, 132–141Google Scholar

About the article

Received: 2016-09-12

Revised: 2017-02-21

Accepted: 2017-04-05

Published Online: 2017-07-05

Published in Print: 2017-09-26


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0064.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in