Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2018: 1.00

SCImago Journal Rank (SJR) 2018: 0.500
Source Normalized Impact per Paper (SNIP) 2018: 0.664

More options …
Volume 62, Issue 3


Molecular characterization and functional analysis of a glutathione peroxidase gene from Aphelenchoides besseyi (Nematoda: Aphelenchoididae)

Bu-Yong Wang
  • College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rong-Rong Wen
  • College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ling Ma
  • Corresponding author
  • College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, 150040, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-05 | DOI: https://doi.org/10.1515/ap-2017-0068


Aphelenchoides besseyi, the nematode agent of rice tip white disease, causes huge economic losses in almost all the rice-growing regions of the world. Glutathione peroxidase (GPx), an esophageal glands secretion protein, plays important roles in the parasitism, immune evasion, reproduction and pathogenesis of many plant-parasitic nematodes (PPNs). Therefore, GPx is a promising target for control A. besseyi. Here, the full-length sequence of the GPx gene from A. besseyi (AbGPx1) was cloned using the rapid amplification of cDNA ends method. The full-length 944 bp AbGPx1 sequence, which contains a 678 bp open reading frame, encodes a 225 amino acid protein. The deduced amino acid sequence of the AbGPxl shares highly homologous with other nematode GPxs, and showed the closest evolutionary relationship with DrGPx. In situ hybridization showed that AbGPx1 was constitutively expressed in the esophageal glands of A. besseyi, suggesting its potential roles in parasitism and reproduction. RNA interference (RNAi) was used to assess the functions of the AbGPx1 gene, and quantitative real-time PCR was used to monitor the RNAi effects. After treatment with dsRNA for 12 h, AbGPx1 expression levels and reproduction in the nematodes decreased compared with the same parameters in the control group; thus, the AbGPx1 gene is likely to be associated with the development, reproduction, and infection ability of A. besseyi. These findings may open new avenues towards nematode control.

Keywords: Aphelenchoides besseyi; Glutathione peroxidase; Gene cloning; In situ hybridization; RNA interference


  • Andrisic L., Collinson E.J., Tehlivets O., Perak E., Zarkovic T., Dawes I.W., et al. 2015. Transcriptional and antioxidative responses to endogenous polyunsaturated fatty acid accumulation in yeast. Molecular and Cellular Biochemistry, 399, 27–37. CrossrefGoogle Scholar

  • Baldwin J.G., Nadler S.A., Adams B.J. 2004. Evolution of plant parasitism among nematodes. Annual Review of Phytopathology, 42, 83–105. CrossrefGoogle Scholar

  • Bridge J., Jim L.S.(Eds) 2007. Plant Nematodes of Agricultural Importance-A Colour Handbook. Academic PressGoogle Scholar

  • Bridge J., Luc M., Plowright R.A.(Eds) 1990. Nematode parasites of rice, Plant parasitic nematodes in subtropical andtropical agriculture. Oxford: CABI PublishingGoogle Scholar

  • Cheng X., Xiang Y., Xie H., Xu C.L., Xie T.F., Zhang C., Li Y. 2013. Molecular Characterization and Functions of Fatty Acid and Retinoid Binding Protein Gene (Ab-far-1) in Aphelenchoides besseyi. PloS One, 8, e66011. CrossrefGoogle Scholar

  • Da Silva G.S. 1992. White tip and national rice production. Informe Agropecuario Belo Horizonte, 16, 57–59Google Scholar

  • Davis E.L., Hussey R.S., Baum T.J. 2004. Getting to the roots of parasitism by nematodes. Trends in Parasitology, 20, 134–141. CrossrefGoogle Scholar

  • De Boer J.M., Yan Y., Smant G., Davis E.L., Baum T.J. 1988. In-situ hybridization to messenger RNA in Heterodera glycines. The Journal of Nematology, 30, 309–312Google Scholar

  • Dellagi A., Heilbron J., Avrova A.O., Montesano M., Palva E.T., Stewart H.E., et al. 2000. A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovorasubsp. Atroseptica and Phytophthora infestansand is coregulated with class I endochitinase expression. Molecular Plant-Microbe Interactions, 13, 1092–1101. CrossrefGoogle Scholar

  • Ding X., Ye J., Wu X., Huang L., Zhu L., Lin S. 2015. Deep sequencing analyses of pine wood nematode Bursaphelenchus xylophilus microRNAs reveal distinct miRNA expression patterns during the pathological process of pine wilt disease. Gene, 555, 346–356. CrossrefGoogle Scholar

  • Espada M., Silva A.C., Eves van den Akker S., Cock P.J., Mota M., Jones J.T. 2016. Identification and characterization of parasitism genes from the pinewood nematode Bursaphelenchus xylophilus reveals a multilayered detoxification strategy. Molecular Plant Pathology, 17, 286–295. CrossrefGoogle Scholar

  • Franklin M.T., Siddigi M.R. 1972. Aphelenchoides besseyi. CIH. Descriptions of plant-parasitic nematodes. UK: Common wealth Agricultural Bureaux Press, pp. 21–23Google Scholar

  • Haegeman A., Elsen A., De Waele D., Gheysen G. 2010. Emerging molecular knowledge on Radopholus similis, an important nematode pest of banana. Molecular Plant Pathology, 11, 315–323. CrossrefGoogle Scholar

  • Henkle-Dührsen K., Kampkotter A. 2001. Antioxidant enzyme families in parasitic nematodes. Molecular and Biochemical Parasitology, 114, 129–142.Google Scholar

  • Herbette S., Roeckel-Drevet P., Drevet J.R. 2007. Seleno-independent glutathione peroxidases, more than simple antioxidant scavengers. The FEBS Journal, 274, 2163–2180. CrossrefGoogle Scholar

  • Hoshino S., Togashi K. 2000. Effect of Water-Soaking and Air-Drying on Survival of Aphelenchoides besseyi in Oryza sativa Seeds. The Journal of Nematology, 32, 303–308Google Scholar

  • Hussey R.S. 1989. Disease-inducing secretions of plant-parasitic nematodes. Annual Review of Phytopathology, 27, 123–141. CrossrefGoogle Scholar

  • Jacob J., Vanholme B., Haegeman A., Gheysen G. 2007. Four transthyretin-like genes of the migratory plantparasitic nematode Radopholus similis members of an extensive nematode-specific family. Gene, 402, 9–19. CrossrefGoogle Scholar

  • Jones J.T., Reavyb B., Smantc G., Prior A.E. 2004. Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis. Gene, 324, 47–54Google Scholar

  • Lawson J.A., Rokach J., FitzGerald G.A. 1999. Isoprostanes formation, analysis and use as indices of lipid peroxidation in vivo. The Journal of Biological Chemistry, 274, 24441–24444. CrossrefGoogle Scholar

  • Li Z., Liu X., Chu Y., Wang Y., Zhang Q., Zhou X. 2011. Cloning and Characterization of a 2-Cys Peroxiredoxin in the Pine Wood Nematode, Bursaphelenchus xylophilus, a Putative Genetic Factor Facilitating the Infestation. International Journal of Biological Sciences, 7, 823–36Web of ScienceGoogle Scholar

  • Lin M.S., Ding X.F., Wang Z.M., Hou F.M., Lin N. 2004. Description of Aphelenchoides besseyi from abnormal rice with ‘small grains and erect panicles’ symptom in China. Rice Science 12, 289–294Google Scholar

  • Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402–408. CrossrefGoogle Scholar

  • Maier T.R., Hewezi T., Peng J., Baum T.J. 2012. Isolation of Whole Esophageal Gland Cells from Plant-Parasitic Nematodes for Transcriptome Analyses and Effector Identification. Molecular Plant-Microbe Interactions, 26, 31–35. CrossrefGoogle Scholar

  • Mamiya Y. 1975. The life history of the pine wood nematode, Bursaphelenchus lignicolus. Japanese Journal of Nematology, 5, 16–25Google Scholar

  • Matamoros M.A., Saiz A., Peñuelas M., Bustos-Sanmamed P., Mulet J.M., Barja M.V., et al. 2015. Function of glutathione peroxidases in legume root nodules. Journal of Experimental Botany, 66, 2979–2990. CrossrefGoogle Scholar

  • McGawley E.C., Rush M.C., Hollis J.P. 1984. Occurrence of Aphelenchoides besseyi in Louisiana Rice Seed and Its Interaction with Sclerotium oryzae in Selected Cultivars. The Journal of Nematology, 16, 65–68Google Scholar

  • Miramón P., Dunker C., Kasper L., Jcobsen I.D., Barz D., Kurzai O., Hube B. 2014. A family of glutathione peroxidases contributes to oxidative stress resistance in Candida albicans. Medical Mycology, 52, 223–239. CrossrefGoogle Scholar

  • Mitchum M.G., Hussey R.S., Baum T.J., Wang X., Elling A.A., Wubben M., Davis E.L. 2013. Nematode effector proteins an emerging paradigm of parasitism. New Phytologist, 199, 879–894. CrossrefGoogle Scholar

  • Pei Y.Y., Cheng X., Xu C.L., Yang Z.F., Xie H. 2016. Virulence of part populations of Aphelenchoides besseyi on rice in China. Chinese Journal of Rice Science, 26, 218–226Google Scholar

  • Qiu X.W., Wu X.Q., Huang L., Ye J.R. 2016. Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus. International Journal of Molecular Sciences, 17, 125. CrossrefGoogle Scholar

  • Reymond P., Farmer E.E. 1998. Jasmonate and salicyclate as global signals for defense gene expression. Current Opinion in Plant Biology, 1, 404–411. CrossrefGoogle Scholar

  • Robertson L., Robertson W.M., Sobczak M., Bakker J., Tetaud E., Ariyanayagam M.R., et al. 2000. Cloning, expression and functional characterisation of a thioredoxin peroxidase from the potato cyst nematode Globodera rostochiensis. Molecular and Biochemical Parasitology, 111, 41–49CrossrefGoogle Scholar

  • Sakamoto T, Maebayashi K, Nakagawa Y, Imai H. 2014. Deletion of the four phospholipid hydroperoxide glutathione peroxidase genes accelerates aging in Caenorhabditis elegans. Genes to Cells, 19, 778–792. CrossrefGoogle Scholar

  • Selkirk M.E., Smith V.P., Thomas G.R., Gounaris K. 1998. Resistance of filarial nematode parasites to oxidative stress. International Journal for Parasitology, 28, 1315–1332CrossrefGoogle Scholar

  • Smant G., Goverse A., Stokkermans J.P., DeBoer J.M., Pomp H.R., Zilverentant J.F., et al. 1997. Potato root diffusateinduced secretion of soluble, basic proteins originating from the subventral esophageal glands of potato cyst nematodes. Phytopathology, 87, 839–845. CrossrefGoogle Scholar

  • Sulston J., Hodgkin J. (Eds) 1988. Methods in the nematode Caenorhabditis elegans, New York: Cold Sring Harbor LaboratoryGoogle Scholar

  • Sun W., Song X., Yan R. 2012. Cloning and characterization of a selenium-independent glutathione peroxidase (HC29) from adult Haemonchus contortus. Journal of Veterinary Medical Science, 13, 49–58Google Scholar

  • Urwin P.E., Lilley C.J., Atkinson H.J. 2002. Ingestion of Double-stranded RNA by pre parasitic juvenile cyst nematodes leads to RNA interference. Molecular Plant-Microbe Interactions, 15, 747–752. CrossrefGoogle Scholar

  • Viglierchio D.R., Schmitt R.V. 1983. On the methodology of nematode extraction from field samples: baermann funnel modifications. The journal of Nematology, 15, 438–444Google Scholar

  • Wang F., Li D., Wang Z., Dong A., Liu L., Wang B., Chen Q., Liu X. 2014. Transcriptomic analysis of the rice white tip nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae). PLoS One, 9, e91591. CrossrefGoogle Scholar

  • Xiang Y., Wu X.Q., Zhou A. D. 2015. Bacterial diversity and community structure in the pine wood nematode Bursaphelenchus xylophilus and B. mucronatus with different virulence by high-throughput sequencing of the 16S rDNA. PLoS One, 10, e0137386. CrossrefGoogle Scholar

  • Zhang C., Xie H., Cheng X., Wang D.W., Li Y., Xu C.L., Huang X. 2015. Molecular identification and functional characterization of the fatty acid and retinoid-binding protein gene Rs-far-1 in the burrowing nematode Radopholus similis (Tylenchida: Pratylenchidae). PloS One, 10, e0118414. CrossrefGoogle Scholar

  • Zhang C., Xie H., Xu C.L., Cheng X., Li K.M., Li Y. 2010. Differential expression of Rs-eng-1b in two populations of Radopholus similis (Tylenchida: Pratylecnchidae) and its relationship to pathogenicity. European Journal of Plant Pathology, 4, 899–910. CrossrefGoogle Scholar

About the article

Received: 2016-11-29

Revised: 2017-04-18

Accepted: 2017-04-20

Published Online: 2017-07-05

Published in Print: 2017-09-26

Citation Information: Acta Parasitologica, Volume 62, Issue 3, Pages 565–574, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0068.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in