Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2018: 1.00

SCImago Journal Rank (SJR) 2018: 0.500
Source Normalized Impact per Paper (SNIP) 2018: 0.664

More options …
Volume 62, Issue 3


In vitro effects of purine and pyrimidine analogues on Leishmania donovani and Leishmania infantum promastigotes and intracellular amastigotes

Samira Azzouz
  • Université de Lyon, Université Claude-Bernard Lyon I, ISPB-Faculté de Pharmacie, Lyon, France
  • Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philippe Lawton
  • Corresponding author
  • Université de Lyon, Université Claude-Bernard Lyon I, ISPB-Faculté de Pharmacie, Lyon, France
  • Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-05 | DOI: https://doi.org/10.1515/ap-2017-0070


Inhibition of parasite metabolic pathways is a rationale for new chemotherapeutic strategies. The pyrimidine and purine salvage pathways are thus targets against Leishmania donovani and L. infantum, causative agents of visceral human leishmaniasis and canine leishmaniosis. The antiproliferative effect of the pyrimidine analogues Cytarabine and 5-fluorouracil and of the purine analogues Azathioprine and 6-mercaptopurine was evaluated in vitro on the promastigote and the intracellular amastigote stages of the parasite. Cytarabine and 5-fluorouracil were the best inhibitors against promastigotes, whereas 5- fluorouracil and azathioprine displayed the best efficacy against the amastigote stage. The ultrastructural study showed an important cytoplasmic vacuolization and with azathioprine and 5-fluorouracyl, a mitochondrial swelling and appearance of autophagosome-like structures. Alterations of the kinetoplast were also observed with 5-fluorouracil, all these damages eventually resulting in an autolysis process that triggered the subsequent death of the intracellular parasites.

Keywords: L. donovani; L. infantum; purine analogues; pyrimidine analogues; antiproliferative effect; ultrastructural modifications


  • Balasegaram M., Ritmeijer K., Lima M.A., Burza S., Ortiz Genovese G., Milani B., et al. 2012. Liposomal amphotericin B as a treatment for human leishmaniasis. Expert Opinion on Emerging Drugs, 17, 493–510. CrossrefWeb of ScienceGoogle Scholar

  • Carter N.S., Yates P.A., Gessford S.K., Galagan S.R., Landfear S.M., Ullman B. 2010. Adaptive responses to purine starvation in Leishmania donovani. Molecular Microbiology, 78, 92–107. CrossrefGoogle Scholar

  • Croft S.L., Olliaro P. 2011. Leishmaniasis chemotherapy–challenges and opportunities. Clinical Microbiology and Infection, 17, 1478–1483. CrossrefWeb of ScienceGoogle Scholar

  • Croft S.L., Sundar S., Fairlamb A.H. 2006. Drug resistance in leishmaniasis. Clinical Microbiological Reviews, 19, 111–126. CrossrefGoogle Scholar

  • De Koning H.P., Bridges D.J., Burchmore R.J.S. 2005. Purine and pyrimidine transport in pathogenic protozoa: from biology to therapy. FEMS Microbiology Reviews, 29, 987–1020. CrossrefGoogle Scholar

  • Dorlo T.P.C., Balasegaram M., Beijnen J.H., de Vries P.J., 2012. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy, 67, 2576–2597. CrossrefGoogle Scholar

  • Eklund B.I., Moberg M., Bergquist J., Mannervik B. 2006. Divergent activities of human glutathione transferases in the bioactivation of azathioprine. Molecular Pharmacology, 70, 747–754. CrossrefGoogle Scholar

  • Farca A.M., Miniscalco B., Badino P. Odore R., Monticelli P., Trisciu oglio A., Ferroglio E. 2012. Canine leishmaniosis: in vitro efficacy of miltefosine and marbofloxacin alone or in combination with allopurinol against clinical strains of Leishmania infantum. Parasitology Research, 110, 2509–2513. CrossrefGoogle Scholar

  • Freitas E.O., Nico D., Guan R., Meyer-Fernandes J.R., Clinch K., Evans G.B., et al. 2015. Immucillins Impair Leishmania (L.) infantum chagasi and Leishmania (L.) amazonensis multiplication in vitro. PLoS One, 10, e0124183. CrossrefGoogle Scholar

  • Lawton P., Hejl C., Mancassola R., Naciri M., Petavy A.F. 2003. Effects of purine nucleosides on the in vitro growth of Cryptosporidium parvum. FEMS Microbiology Letters, 226, 39–43. CrossrefGoogle Scholar

  • Leroux A.E., Krauth-Siegel R.L. 2015. Thiol redox biology of Trypanosomatids and potential targets for chemotherapy. Molecular and Biochemical Parasitology, CrossrefGoogle Scholar

  • Martin J.L., Yates P.A., Soysa R., Alfaro J.F., Yang F., Burnum-Johnson K.E., et al. 2014. Metabolic reprogramming during purine stress in the protozoan pathogen Leishmania donovani. PLoS Pathogens, 10, e1003938. CrossrefGoogle Scholar

  • Mondal S., Roy J.J., Bera T. 2014. Generation of adenosine tri-phosphate in Leishmania donovani amastigote forms. Acta Parasitologia, 59, 11–16. CrossrefGoogle Scholar

  • Monge-Maillo B., López-Vélez R. 2013. Therapeutic options for visceral leishmaniasis. Drugs, 73, 1863–1888. CrossrefWeb of ScienceGoogle Scholar

  • Pachioni J. de A., Magalhães J.G., Lima E.J.C., Bueno L. de M., Barbosa J.F., de Sá M.M., Rangel-Yagui C.O., 2013. Alkylphospholipids - a promising class of chemotherapeutic agents with a broad pharmacological spectrum. Journal of Pharmacy and Pharmaceutical Sciences, 16, 742–759. CrossrefGoogle Scholar

  • Serafim T.D., Figueiredo A.B., Costa P.A.C., Marques-da-Silva E.A., Gonçalves R., de Moura S.A.L., et al. 2012. Leishmania metacyclogenesis is promoted in the absence of purines PLoS Neglected Tropical Diseases, 6, e1833. CrossrefGoogle Scholar

  • Solano-Gallego L., Miró G., Koutinas A., Cardoso L., Pennisi M.G., Ferrer L., et al. 2011. LeishVet guidelines for the practical management of canine leishmaniosis. Parasites & Vectors, 4, 86–102. CrossrefWeb of ScienceGoogle Scholar

  • Soysa R., Wilson Z.N., Elferich J., Forquer I., Shinde U., Riscoe M.K., et al. 2013. Substrate inhibition of uracil phosphoribosyltransferase by uracil can account for the uracil growth sensitivity of Leishmania donovani pyrimidine auxotrophs. Journal of Biological Chemistry, 288, 29954–29964. CrossrefGoogle Scholar

  • Sundar S., Chakravarty J. 2013. Leishmaniasis: an update of current pharmacotherapy. Expert Opinion on Pharmacotherapy, 14, 53–63. CrossrefWeb of ScienceGoogle Scholar

  • Vincent I.M., Barrett M.P. 2015. Metabolomic-based strategies for anti-parasite drug discovery. Journal of Biomolecular Screening, 20, 44–55. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-01-31

Revised: 2017-04-12

Accepted: 2017-04-26

Published Online: 2017-07-05

Published in Print: 2017-09-26

Citation Information: Acta Parasitologica, Volume 62, Issue 3, Pages 582–588, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0070.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Junaid Jibran Jawed, Sayanika Dutta, and Subrata Majumdar
Biomedicine & Pharmacotherapy, 2019, Volume 117, Page 109098

Comments (0)

Please log in or register to comment.
Log in