Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 62, Issue 3 (Sep 2017)

Issues

In vitro and in vivo studies of nematophagous fungi Arthrobotrys musiformis and Arthrobotrys robusta against the larvae of the trichostrongylides

Kui Zheng Cai
  • Corresponding author
  • College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou 730030, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bo Bo Wang
  • College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou 730030, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qiang Xu
  • College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou 730030, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jun Lin Liu
  • College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou 730030, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kang Ying Wang
  • College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou 730030, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yu Jia Xue
  • College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou 730030, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hai Yan Zhang
  • College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou 730030, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hai Yu Wang
  • College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou 730030, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xin Cao
  • Corresponding author
  • College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou 730030, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhong Ren Ma
  • Corresponding author
  • Key Laboratory of Bioengineering and Biotechnology (Northwest University for Nationalities), State Ethnic Affairs Commission, Lanzhou 730030, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-05 | DOI: https://doi.org/10.1515/ap-2017-0080

Abstract

Six isolates of Arthrobotrys musiformis and five isolates of Arthrobotrys robusta were assessed in in vitro test regarding the capacity of prey larvae of the natural mixed trichostrongylides. In 5 isolates of A. robusta, the decrease percentage of infective larvae (L3) of trichostrongylides ranged from 97.71%–99.98% and for the isolates of A. musiformis, 5 isolates ranged from 97.99%–99.95% and only NF015 isolate 60.72%. In the following, the isolate (NPS045) of A. musiformis was selected to assess its excretion time in feces after oral administration of goats. Regarding L3 reduction rate, results demonstrated by NPS045 at each time point after fungal administration were 31.65% (12 h), 51.25% (24 h), 41.07% (48 h), 6.44% (72 h), 0% (96 h) and (120 h) (p<0.05) respectively, when compared to the control group. In the plates of the treated groups, the presence of the isolate (NPS045) was detected in samples at 12, 24 and 48 h after the fungus dose and 72 h later was not done. All native isolates of nematophagous fungi, including 6 isolates of A. musiformis and 5 isolates of A. robusta were assessed in vivo regarding the capacity of supporting the passage through goat gastrointestinal tract. The 3 isolates of A. musiformis could be able to pass through the digestive tract of goats without complete loss of ability of preying larvae of trichostrongylides in feces and their efficacies ranged from 47.60% to 55.93%. The two isolates of A. robusta survived the passage and the percentage reduction of L3 in feces were 41.96% and 66.97%, respectively. The remaining isolates were negative for both the efficacy of L3 reduction and the fungal examination in feces. In this study, the native isolates whose efficacies are good in vivo test have preliminarily demonstrated to be potential for the biological control of small ruminant parasite.

Keywords: Arthrobotrys musiformis; Arthrobotrys robusta; nematophagous fungi; goats; sheep

References

  • Anan’ko G.G., Teplyakova T.V. 2011. Factors responsible for transition of the Duddingtonia flagrans carnivorous fungus from the saprotrophic to the zootrophic nutrition type. Microbiology, 80, 200–206. CrossrefGoogle Scholar

  • Araújo J.V., Santos M.A., Ferraz S., Maia A.S. 1993. Antagonistic effect of predacious fungi Arthrobotrys on infective Haemonchus placei larvae. Journal Helmintholohy, 67, 136–138. CrossrefGoogle Scholar

  • Araújo J.V., Assis R.C.L., Campos A.K., Mota M.A. 2006. Efeito antagônico de fungos predadores dos gêneros Monacrosporium, Arthrobotrys e Duddingtonia sobre larvas infectantes de Cooperia sp. e Oesophagostomum sp.. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 58, 373–380. . (In Spanish)CrossrefGoogle Scholar

  • Araújo J.M., Araújo J.V., Braga F.R., Carvalho R.O. 2010. In vitro predatory activity of nematophagous fungi and after passing through gastrointestinal tract of equine on infective larvae of Strongyloides westeri. Parasitology Research, 107, 103–107. CrossrefGoogle Scholar

  • Assis R.C., Luns F.D., Araújo J.V., Braga F.R., Assis R.L., Marcelino J.L., et al. 2013. Comparison between the action of nematode predatory fungi Duddingtonia flagrans and Monacrosporium thaumasium in the biological control of bovine gastrointestinal nematodiasis in tropical Southeastern Brazil. Veterinary Parasitology, 193, 134–140. CrossrefGoogle Scholar

  • Barcante J.M., Barcante T.A., Dias S.R., Vieira L.Q., Lima W.S., Negraocorrea D. 2003. A method to obtain axenic Angiostrongylus vasorum first-stage larvae from dog feces. Parasitology Research, 89, 89–93. CrossrefGoogle Scholar

  • Barger I.A. 1999. The role of epidemiological knowledge and grazing management for helminth control in small ruminants. International Journal for Parasitology, 29, 41–47. CrossrefGoogle Scholar

  • Braga F.R., Araújo J.V., Araujo J.M., Silva A.R., Carvalho R.O., Campos A.K. 2009a. Avaliação in vitro do fungo predador de nematoides Duddingtonia flagrans sobre larvas infectantes de ciatostomíneos deequinos (Nematoda: Cyathostominae). Revista Brasileira De Parasitologia Veterinaria, 18, 83–85. . (In Spanish)CrossrefGoogle Scholar

  • Braga F.R., Carvalho R.O., Araujo J.M., Silva A.R., Araújo J.V., Lima W.S, et al. 2009b. Predatory activity of the fungi Duddingtonia flagrans, Monacrosporium thaumasium, Monacrosporium sinense and Arthrobotrys robusta on Angiostrongylus vasorum first-stage larvae, Journal of Helminthology, 83, 303–308. CrossrefGoogle Scholar

  • Braga F.R., Silva A.R., Carvalho R.O., Araújo J.V., Guimarães P.H.G., Fujiwara R.T., Frassy L.N. 2010. In vitro predatory activity of the fungi Duddingtonia flagrans, Monacrosporium thaumasium, Monacrosporium sinense and Arthrobotrys robusta on Ancylostoma ceylanicum third stage larvae. Veterinary Microbiology, 146, 183–186. CrossrefGoogle Scholar

  • Braga F.R., Araujo J.V. 2014. Nematophagous fungi for biologicalcontrol of ga-trointestinal nematodes in domestic animals. Applied Microbiology and Biotechnology, 98, 71–82. CrossrefGoogle Scholar

  • Cai K.Z., Liu J.L., Liu W., Wang B.B., Xu Q., Sun L.J., et al. 2016. Screening of different sample types associated with sheep and cattle for the presence of nematophagous fungi in China. Journal of Basic Microbiology, 56, 214–228. CrossrefWeb of ScienceGoogle Scholar

  • Craig T. M. 2006. Anthelmintic resistance and alternative control methods. Veterinary Clinics of North America–Food Animal Practice, 22, 567–581. CrossrefGoogle Scholar

  • De Gives P.M., Crespo J.F., Rodriguez D. H., Prats V. M. V., Rodríguez D.H., Hernández E. L., Ontiveros Fernandez G.E. 1998. Biological control of Haemonchus contortus infective larvae in ovine faeces by administering an oral suspension of Duddingtonia flagrans chlamydospores to sheep. Journal of Helminthology, 72, 343–347. CrossrefGoogle Scholar

  • Dias A.S., Araújo J.V., Campos A.K., Braga F.R., Fonseca T.A. 2007. Application of a formulation of the nematophagous fungus Duddingtonia flagrans in the control of cattle gastrointestinal nematodioses. World Journal of Microbiology, 28, 1000–1007. CrossrefGoogle Scholar

  • Faizal A.C.M., Rajapakse R.P.V.J. 2004. A preliminary study to determine the efficacy of a nematophgous fungus, Arthrobotry oligospora, against nematode larvae in cattle and goat dung. Journal of the National Science Foundation of Sri Lanka, 32, 29–33. CrossrefGoogle Scholar

  • Falzon L.C., van Leeuwen J., Menzies P.I., Shakya K.P., Jones-Bitton A., Sears W., et al. 2013. Anthelmintic resistance in sheep flocks in Ontario, Canada. Veterinary Parasitology, 193, 150–162. CrossrefWeb of ScienceGoogle Scholar

  • Ferreira S.R., Araújo J.V., Braga F.R., Araujo J.M., Carvalho R.O., Silva A.R., et al. 2011. Ovicidal activity of seven Pochonia chlamydosporia fungal isolates on Ascaris suum eggs. Tropical Animal Health and Production, 43, 639–642. CrossrefGoogle Scholar

  • Gr⊘nvold J., Nansen P., Henriksen S.A., Larsen M., Wolstrup J., Bresciani J., et al. 1996. Induction of traps by Ostertagia ostertagi larvae, chlamydospore production and growth rate in the nematode-trapping fungus Duddingtonia flagrans. Journal of Helminthology, 70, 291–297. CrossrefGoogle Scholar

  • Larsen M., Faedo M., Waller P.J., Hennessy D.R. 1998. The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: Studies with Duddingtonia flagrans. Veterinary Parasitology, 76, 121–128. CrossrefGoogle Scholar

  • Larsen M. 1999. Biological control of helminths. International Journal For Parasitology, 29, 139–146. CrossrefGoogle Scholar

  • Menkir M.S., Asefa A., Uggla A., Waller P.J. 2006. Anthelmintic resistance of nematode parasites of small ruminantsineastern Ethiopia: exploitation of refugia to restore anthelmintic efficacy. Veterinary Parasitology, 135, 337–346. CrossrefGoogle Scholar

  • Mota M.A., Campos A.K., Araújo J.V. 2003. Controle biológico de helmintos parasitos de animais: estágio atual e perspectivas futuras. Pesquisa Veterinaria Brasileira, 23, 93–100. . (In Spanish)CrossrefGoogle Scholar

  • Nansen P., Foldager J., Hansen J., Henriksen S.A., Jorgensen R.J. 1988. Grazing pressure and acquisition of Ostertagia ostertagi in calves. International Journal Parasitology, 27, 325–335. CrossrefGoogle Scholar

  • Paz-Silva A., Francisco I., Valero-Coss R.O., Cortiñas F.J., Sánchez J.A., Francisco R., et al. 2011. Ability of the fungus Duddingtonia flagrans to adapt to the cyathostomin egg-output by spreading chlamdospores. Veterinary Parasitology, 179, 277–282. CrossrefGoogle Scholar

  • Petkevicius S., Larsen M., Bach Knudsen E. K., Nansen P., Gronvolda J., Henriksen S. A. A., Wolstrup J. 1998. The effect of the nematode-destroying fungus Duddingtonia flagrans against Oesophagostomum dentatum larvae in faeces from pigs fed different diets. Helminthologia, 35, 111–116Google Scholar

  • Sargison N.D. 2012. Pharmaceutical treatments of gastrointestinal nematode infections of sheep—future of anthelmintic drugs, Veterinary Parasitology, 189, 79–84. CrossrefWeb of ScienceGoogle Scholar

  • Scholler M., Rubner A. 1994. Predacious activity of the nematode-destroying fungus Arthrobotrys oligospora in dependence of the medium composition. Microbiological research, 149, 145–149. CrossrefGoogle Scholar

  • Silva B.F., Mauad J.R.C., Braga F.R., Araújo J.V., Campos A.K., Amarante A.F.T. 2010. Efficacy of Duddingtonia flagrans and Arthrobotrys robusta in controlling sheep parasitic gastroenteritis. Parasitology Research, 106, 1343–1350. CrossrefGoogle Scholar

  • Tavela A.O., Araújo J.V., Braga F.R., Araújo J.M., Queiroz L.M., Silveira W.F., Borges L.A. 2012. In vitro association of nematophagous fungi Duddingtonia flagrans (AC001), Monacrosporium thaumasium (NF34) and Pochonia chlamydosporia (VC1) to control horse cyathostomin (Nematoda: Strongylidae). Biochemisty Science Technology, 22, 607–610. CrossrefGoogle Scholar

  • Tavela A.O, Araújo J.V., Braga F.R., Silveira W.F., Dornelas e Silva V.H., Carretta Júnior M., et al. 2013. Coadministration of sodium alginate pellets containing the fungi Duddingtonia flagrans and Monacrosporium thaumasium on cyathostomin infective larvae after passing through the gastrointestinal tract of horses. Research Veterinary, 94, 568–572. CrossrefGoogle Scholar

  • Terril T.H., Larsen M., Samples O., Hsted S., Miller J.E., Kaplan RM., Gelaye S. 2004. Capability of the nematode-trapping fungus Duddingtonia flagrans to reduce infective larvae of gastrointestinal nematodes in goat feces in the southeastern United States: dose titration and dose time interval studies. Veterinary Parasitology, 120, 85–296. CrossrefGoogle Scholar

  • Van Wyk J.A., Cabaret J., Michael L.M. 2004. Morphological identification of nematode larvae of small ruminants and cattle simplified. Veterinary Parasitology, 119, 277–306. CrossrefGoogle Scholar

  • Waghorn T.S., Leathwick D.M., Chen L.Y., Skipp R.A. 2003. Efficacy of the nematode-trapping fungus Duddingtonia flagrans against threespecies of gastro-intestinal nematodesin laboratory faecal cultures from sheep and goats. Veterinary Parasitology, 118, 227–234. .CrossrefGoogle Scholar

  • Waller P.J., Faedo M. 1993. The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: screening studies. Veterinary Parasitology, 49, 285-297. CrossrefGoogle Scholar

  • Wang B.B., Liu W., Chen M.Y., Li X., Han Y., Xu Q., et al. 2015. Isolation and characterization of china isolates of Duddingtonia flagrans, a candidate of the nematophagous fungi for biocontrol of animal parasitic nematodes. Journal of Parasitology, 101, 476–484. CrossrefGoogle Scholar

About the article

Received: 2016-10-29

Revised: 2017-04-27

Accepted: 2017-05-17

Published Online: 2017-07-05

Published in Print: 2017-09-26


Conflict of interest statement: All authors declare no financial or commercial conflicts of interest.


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0080.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in