Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 62, Issue 4

Issues

Apparent isocitrate lyase activity in Leishmania amazonensis

Concepción Hernández-Chinea
  • Corresponding author
  • Laboratorio de Fisiología de Membranas. Instituto de Biología Experimental. Facultad de Ciencias, Universidad Central de Venezuela. Apartado 47114, Caracas 1041-A. Venezuela
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Laura Maimone
  • Laboratorio de Fisiología de Membranas. Instituto de Biología Experimental. Facultad de Ciencias, Universidad Central de Venezuela. Apartado 47114, Caracas 1041-A. Venezuela
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yelitza Campos
  • Instituto de Biomedicina. Facultad de Medicina, Universidad Central de Venezuela. Caracas, Venezuela
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Walter Mosca
  • Instituto de Biomedicina. Facultad de Medicina, Universidad Central de Venezuela. Caracas, Venezuela
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pedro J. Romero
  • Laboratorio de Fisiología de Membranas. Instituto de Biología Experimental. Facultad de Ciencias, Universidad Central de Venezuela. Apartado 47114, Caracas 1041-A. Venezuela
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-15 | DOI: https://doi.org/10.1515/ap-2017-0084

Abstract

Early reports have demonstrated the occurrence of glyoxylate cycle enzymes in several Leishmania species. However, these results have been underestimated because genes for the two key enzymes of the cycle, isocitrate lyase (ICL) and malate synthase (MS), are not annotated in Leishmania genomes. We have re-examined this issue in promastigotes of Leishmania amazonensis. Enzyme activities were assayed spectrophotometrically in cellular extracts and characterized partially. A 40 kDa band displaying ICL activity was visualized on zymograms of the extracts. By immunoblotting with mouse antibodies against ICL from Bacillus stearothermophilus, a band of approximately 40 kDa was identified, coincident with the relative molecular mass of the activity band revealed on zymograms. Indirect immunofluorescence of intact promastigotes showed that the recognized antigen is distributed as a punctuated pattern, mainly distributed beneath the subpellicular microtubules, over a diffused cytoplasmic stain. These results clearly demonstrate the existence of an apparent ICL activity in L. amazonensis promastigotes, which is associated to a 40 kDa polypeptide and distributed both diffused and as punctuate aggregates in the cytoplasm. The relevance of this activity is discussed.

Keywords: Leishmania amazonensis; promastigote; glyoxylate cycle; isocitrate lyase; malate synthase

References

  • Britton K.L., Langridge S.J., Baker P.J., Weeradechapon K., Sedelnikova S.E., De Lucas J.R., et al. 2000. The crystal structure and active site location of isocitrate lyase from the fungus Aspergillus nidulans. Structure, 8, 349–362. CrossrefPubMedGoogle Scholar

  • Chell R.M., Sundaram T.K., Wilkinson A.E.1978. Isolation and characterization of isocitrate lyase from a thermophilic Bacillus sp. Biochemical Journal, 173, 165–177. CrossrefGoogle Scholar

  • Cioni M., Pinzauti G., Vanni P. 1981. Comparative biochemistry of the glyoxylate cycle. Comparative Biochemistry and Physiology, 70B, 1–26. CrossrefGoogle Scholar

  • Cohen-Freue G., Holzer T.R., Forney J.D., McMaster W.R. 2007. Global gene expression in Leishmania. International Journal for Parasitology, 37, 1077–1086. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Courret N., Fréhel C., Gouhier N., Pouchelet M., Prina E., Roux P., Antoine J-C. 2002. Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites. Journal of Cell Science, 115, 2303–2316PubMedGoogle Scholar

  • Dixon G.H., Kornberg H.L. 1959. Assay methods for key enzymes of the glyoxylate cycle. Biochemical Journal, 72, 3P. CrossrefGoogle Scholar

  • Dunn M.F., Ramírez-Trujillo J.A., Hernández-Lucas I. 2009. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology, 155, 3166–3175. CrossrefWeb of SciencePubMedGoogle Scholar

  • Ginger M.L. 2006. Niche metabolism in parasitic protozoa. Philosophycal Transactions of the Royal Society B: Biological Sciences, 361, 101–118. CrossrefGoogle Scholar

  • Henderson B., Martin A. 2011. Bacterial Virulence in the Moonlight: Multitasking Bacterial Moonlighting Proteins Are Virulence Determinants in Infectious Disease. Infection and Immunity, 79, 3476–3491. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Höner Zu Bentrup K., Miczak A., Swenson D.L., Russell D.G. 1999. Characterization of Activity and Expression of Isocitrate Lyase in Mycobacterium avium and Mycobacterium tuberculosis. Journal of Bacteriology, 181, 7161–7167PubMedGoogle Scholar

  • Hou W-C., Chen H-J., Lin Y-W., Chen Y-C., Yang L-L., Lee M-H. 2001. Activity staining of isocitrate lyase after electrophoresis on either native or sodium dodecyl sulfate polyacrylamide gels. Electrophoresi,s 22, 2653–2655. CrossrefGoogle Scholar

  • Hoyt J.C., Johnson K.E., Reeves H.C. 1991. Purification and Characterization of Acinetobacter calcoaceticus Isocitrate Lyase. Journal of Bacteriology, 173, 6844–6848PubMedCrossrefGoogle Scholar

  • Ivens A.C., Peacock C.S., Worthey E.A., Murphy L., Aggarwal G., Berriman M., et al. 2005. The genome of the kinetoplastid parasite, Leishmania major. Science, 309, 436–442. CrossrefGoogle Scholar

  • Jeffery C.J. 1999. Moonlighting proteins. Trends in Biochemical Sciences, 24, 8–11. CrossrefWeb of SciencePubMedGoogle Scholar

  • Keegan F.P., Blum J.J. 1993. Incorporation of label from acetate and laurate into the mannan of Leishmania donovani via the glyoxylate cycle. Journal of Eukaryotic Microbiology, 40, 730–732. CrossrefGoogle Scholar

  • Lorenz M.C., Fink G.R. 2001. The glyoxylate cycle is required for fungal virulence. Nature, 412, 83–86. CrossrefPubMedGoogle Scholar

  • Lorenz M.C., Fink G.R. 2002. Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryotic Cell, 1, 657–662. CrossrefGoogle Scholar

  • Lowry O., Rosebrough N., Farr A., Randall R. 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275Google Scholar

  • McFadden B.A., Purohit S. 1977. Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. Journal of Bacteriology, 131, 136–144PubMedGoogle Scholar

  • McKinney J.D., Höner zu Bentrup K., Muñoz-Elias E.J., Miczak A., Chen B., Chan W.T., et al. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature, 406, 735–738. CrossrefPubMedGoogle Scholar

  • Mosca W., Navarro N., Campos Y., Briceño L. 2006. Proliferation and bystander suppression induced by antigens of Trypanosoma cruzi. Evaluation with a modification of the T cell blot technique. Investigacion Clinica, 47, 265–282Google Scholar

  • Mottram J.C., Coombs G.H. 1985. Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals. Experimental Parasitology, 59, 151–160. CrossrefPubMedGoogle Scholar

  • Mukada A.J. 1977. Tricarboxylic acid and glyoxylate cycles in the Leishmaniae. Acta Tropica, 34, 167–175PubMedGoogle Scholar

  • Munir E., Hattori T., Shimada M. 2002. Purification and characterization of isocitrate lyase from the wood-destroying basidiomycete Fomitopsis palustris grown on glucose. Archives of Biochemistry and Biophysics, 399, 225–231. CrossrefPubMedGoogle Scholar

  • Opperdoes F.R., Coombs G.H. 2007. Metabolism of Leishmania: proven and predicted. Trends in Parasitology, 23, 149–158. CrossrefWeb of SciencePubMedGoogle Scholar

  • Orengo C.A., Jones D.T., Thornton J.M. 1994. Protein superfamilies and domain superfolds. Nature, 372, 631–634. CrossrefPubMedGoogle Scholar

  • Reinscheid D.J., Eikmanns B.J., Sahm H. 1994. Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme. Journal of Bacteriology, 176, 3474–3483CrossrefPubMedGoogle Scholar

  • Rosenzweig D., Smith D., Opperdoes F., Stern S., Olafson R.W., Zilberstein D. 2008. Retooling Leishmania metabolism: from sand fly gut to human macrophage The FASEB Journal, 22, 590–602. CrossrefGoogle Scholar

  • Russell D.G., Xu S., Chakraborty P. 1992. Intracellular trafficking and the parasitophorous vacuole of Leishmania mexicana-infected macrophages. Journal of Cell Science, 103, 1193–1210PubMedGoogle Scholar

  • Schaible U.E., Schlesinger P.H., Steinberg T.H., Mangel W.F., Kobayashi T., Russell D.G. 1999. Parasitophorous vacuoles of Leishmania mexicana acquire macromolecules from the host cell cytosol via two independent routes. Journal of Cell Science, 112, 681–693PubMedGoogle Scholar

  • Schmidt G., Stahmann K-P., Sahm H. 1996. Inhibition of purified isocitrate lyase identified itaconate and oxalate as potential antimetabolites for the riboflavin overproducer Ashbya gossypii. Microbiology, 142, 411–417. CrossrefGoogle Scholar

  • Simon M.W., Martin E., Mukkada A.J. 1978. Evidence for a functional glyoxylate cycle in the Leishmaniae. Journal of Bacteriology, 135, 895–899PubMedGoogle Scholar

  • Singh N., Kumar M., Singh R.K. 2012. Leishmaniasis: Current status of available drugs and new potential drug targets. Asian Pacific Journal of Tropical Medicine, 5, 485–497. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Towbin H., Staehlin T., Gordon J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, 76, 4350–4354CrossrefGoogle Scholar

  • Vanni P., Giachetti E., Pinzauti G., McFadden B.A. 1990. Comparative structure, function and regulation of isocitrate lyase, an important assimilatory enzyme. Comparative Biochemistry and Physiology, B95, 431–458. CrossrefGoogle Scholar

About the article

Received: 2016-08-15

Revised: 2017-02-22

Accepted: 2017-06-23

Published Online: 2017-10-15

Published in Print: 2017-12-20


Citation Information: Acta Parasitologica, Volume 62, Issue 4, Pages 701–707, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0084.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in