Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

See all formats and pricing
More options …
Volume 62, Issue 4


Oxidative stress and cytotoxicity elicited lipid peroxidation in hemocytes of Bombyx mori larva infested with dipteran parasitoid, Exorista bombycis

Makwana Pooja
  • Proteomics Division, Seribiotech Research Laboratory, Central Silk Board, CSB-Kodathi Campus, Bangalore –560035, Karnataka, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Appukuttan Nair R. Pradeep
  • Corresponding author
  • Proteomics Division, Seribiotech Research Laboratory, Central Silk Board, CSB-Kodathi Campus, Bangalore –560035, Karnataka, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shambhavi P. Hungund
  • Proteomics Division, Seribiotech Research Laboratory, Central Silk Board, CSB-Kodathi Campus, Bangalore –560035, Karnataka, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chandrashekhar Sagar
  • Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore-560029, Karnataka, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kangayam M. Ponnuvel
  • Proteomics Division, Seribiotech Research Laboratory, Central Silk Board, CSB-Kodathi Campus, Bangalore –560035, Karnataka, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arvind K. Awasthi
  • Proteomics Division, Seribiotech Research Laboratory, Central Silk Board, CSB-Kodathi Campus, Bangalore –560035, Karnataka, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kanika Trivedy
Published Online: 2017-10-15 | DOI: https://doi.org/10.1515/ap-2017-0086


Parasitization of silkworm, Bombyx mori by invasive larva of dipteran parasitoid Exorista bombycis caused upto 20% revenue loss in sericulture. The parasitism was successful by suppressing host immune system however mechanism of immune suppression induced by E. bombycis is unknown which is unravelled here. The infestation induced cytotoxic symptoms in host hemocytes, such as vacuolated cytoplasm, porous plasma membrane, indented nuclei with condensed chromatin and dilated RER. One of the markers of necrosis is cell permeabilization, which can be measured as released lactate dehydrogenase (LDH). LDH level showed significantly (P<0.01) high release into extracellular medium in vitro after exposure of hemocytes to parasitoid larval tissue protein compared with control revealing membrane permeability and loss of cell integrity. At five minutes after exposure, cytotoxicity was 43% and was increased to 99% at 3h. The cytotoxicity is signalled by increased content of hydrogen peroxide (H2O2) causing lipid peroxidation followed by porosity in plasma membrane. A test for lipid peroxidation by measurement of lipid peroxidation breakdown product, malondialdehyde (MDA) revealed significant increase in peroxidation from one to 24 h post-invasion, with maximum at 12 h (P<0.008). Level of reactive oxygen species measured as H2O2 production increased from 6 to 12 h post-invasion and continued to increase significantly (P<0.03) reaching maximum at 48 h. These observations reveal that dipteran endoparasitoid invasion induced H2O2 production in the hemocytes causing cytotoxicity, lipid peroxidation and membrane porosity that suppressed both humoral- and cell-mediated immune responses of hemocytes in B. mori.

Keywords: Bombyx mori; cytotoxicity by ROS; dipteran parasitoid; lipid peroxidation; immune suppression


  • Anitha J., Pradeep A.R., Sivaprasad V. 2014. Upregulation of Atg5 and AIF gene expression in synchronization with programmed cellular death events in integumental epithelium of Bombyx mori induced by a dipteran parasitoid infection. Bulletin of Entomological Research, 104, 794–780. http://dx.doi.org/10.1017/S0007485314000686PubMedCrossref

  • Asgari S., Rivers D. B. 2011. Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annual Review of Entomology, 56, 313–335CrossrefPubMedGoogle Scholar

  • Asgari S., Zhang G., Zareie R., Schmidt O. 2003. A serin proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochemistry and Molecular Biology, 33, 1017–1024CrossrefGoogle Scholar

  • Ayala A., Muñoz M.F., Argüelles S. 2014. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.Oxidative Medine and Cellular Longevity, Article ID 360438; http://dx.doi.org/10.1155/2014/360438

  • Beck M, Theopold U, Schmidt O. 2000. Evidence of serine protease inhibitor activity in the ovarian calyx fluid of the endoparasitoid Venturia canescens. Journal of Insect Physiology, 46, 1275–1283CrossrefPubMedGoogle Scholar

  • Burke G.R., Strand M.R. 2012. Deep sequencing identifies viral and wasp genes with potential roles in replication of Microplitis demolitor Bracovirus. Journal of Virology, 86, 3293–3306. CrossrefPubMedGoogle Scholar

  • Cai J., Ye G.Y., Hu C. 2004. Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae): effects of parasitization and venom on host hemocytes. Journal of Insect Physiology, 50, 315–322. http://dx.doi.org/10.1016/j.jinsphys.2004.01.007CrossrefPubMed

  • Carton Y., Frey F., Nappi A.J. 2009. Parasite-induced changes in nitric oxide levels in Drosophila paramelanica. Journal of Parasitology, 95, 1134–1141. http://dx.doi.org/10.1645/GE-2091.1Crossref

  • Chan F. K., Moriwaki K., De Rosa M.J. 2013. Detection of necrosis by release of lactate dehydrogenase (LDH) activity. Methods in Molecular Biology, 979, 65–70. CrossrefGoogle Scholar

  • Davies D. H., Vinson S. B. 1986. Passive evasion by eggs of the braconid parasitoid Cardiochiles nigriceps of encapsulation in vitro by haemocytes of host Heliothis virescens. Journal of Insect Physiology, 32, 1003–1010CrossrefGoogle Scholar

  • Davies D. H., Strand M. R., Vinson S. B. 1987. Changes in differential haemocyte count and in vitro behavior of plasmatocytes from host Heliothis virescens caused by Campoletis sonorensis polydnavirus. Journal of Insect Physiology, 33, 143–153CrossrefGoogle Scholar

  • Decker T., Lohmann-Matthes M.L. 1988. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. Journal of Immunological Methods, 115, 61–69CrossrefPubMedGoogle Scholar

  • Edson K. M., Vinson S. B., Stotz D. B., Summers M. D. 1981. Virus in a parasitoid wasp: suppression of the cellular immune response in the parasitoid’s host. Science, 211, 582–583CrossrefGoogle Scholar

  • Fang Q., Wang F., Gatehouse J.A., Gatehouse A.M.R., Chen X-X., et al. 2011. Venom of parasitoid, Pteromalus puparum, suppresses host, Pieris rapae, immune promotion by decreasing host C-Type Lectin gene expression. PLoS ONE, 6(10): e26888. CrossrefPubMedGoogle Scholar

  • Fang Q, Wang L, Zhu JY, Li YM, Song QS, et al. 2010. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum, BMC Genomics, 11, 484, CrossrefPubMedGoogle Scholar

  • Fatima M.N., Vivek A.S., Amreeta D., Uma D.P., 2011. Oxidative stress and antioxidant status in primary bone and soft tissue sarcoma. BMC Cancer, 11, 382. CrossrefPubMedGoogle Scholar

  • Fernandez-Botran R., Větvička V. 2000. Cell cytotoxicity, in: Advanced methods in cellular immunology. CRC Press LLC, Florida., 119–133. eBook ISBN:978-1-4200-3923-8Google Scholar

  • Ferrarese R., Morales J., Fimiarz D., Webb B.A., Govind S. 2009. A supracellular system of actin-lined canals controls biogenesis and release of virulence factors in parasitoid venom glands. Journal of Experimental Biology, 212, 2261–2268CrossrefGoogle Scholar

  • Finney D . J. 1971. Probit Analysis, Cambridge University Press, London, pp. 333Google Scholar

  • Hodges M., Delong J.M., Forney C.F., Prange R.K. 1999. Improving the thiobarbituric acid-reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604 – 611. CrossrefGoogle Scholar

  • Ibrahim A.M., Kim Y. 2006. Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. Journal of Insect Physiology, 52, 943–950PubMedCrossrefGoogle Scholar

  • Ioannou Y.A., Chen F.W. 1996. Quantitation of DNA fragmentation in apoptosis. Nucleic Acids Research, 24, 992–993 http://dx.doi.org/10.1093/nar/24.5CrossrefPubMed

  • Kasibhatla S., Amarante-Mendes G.P., Finucane D., Brunner T., Bossy-Wetzel E., Green D.R. 2006. Acridine Orange/Ethidium Bromide (AO/EB) staining to detect apoptosis. Cold Spring Harbor Protocols, cshprotocols.cshlp.org. CrossrefGoogle Scholar

  • Krishnan N., Hyrsl P., Simek V., 2006. Nitric oxide production by hemocytes of larva and pharate prepupa of Galleria mellonella in response to bacterial lipopolysaccharide: Cytoprotective or cytotoxic? Comparative Biochemistry and Physiology C: Toxicology and Pharmacology, 142, 103 – 110. http://dx.doi.org/10.1016/j.cbpc.2005.10.016

  • Kroemer J.A., Webb B.A. 2004. Polydnavirus genes and genomes: emerging gene families and new insights into polydnavirus replication. Annual Review of Entomology, 49, 431–456CrossrefPubMedGoogle Scholar

  • Loreto F., Velikova V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127, 1781–1787. http://dx.doi.org/10.1104/pp.010497PubMedCrossref

  • Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the folin-phenol reagent. Journal of Biological Chemistry, 193, 265 – 275.Google Scholar

  • Lynn D.W. 2001. Novel techniques to establish new insect cell lines. In Vitro Cellular & Developmental BiologyAnimal, 37, 319–321PubMedCrossrefGoogle Scholar

  • Makwana P., Pradeep A.N., Hungund S.P., Ponnuvel K.M., Trivedy K. 2017. The dipteran parasitoid Exorista bombycis induces pro- and anti-oxidative reactions in the silkworm Bombyx mori: Enzymatic and genetic analysis. Archives of Insect Biochemistry and Physiology, 94, CrossrefPubMedGoogle Scholar

  • Martínez-Maqueda D., Hernández-Ledesma B., Amigo L., Miralles B., Gómez-Ruiz J. Á. 2013. Extraction/Fractionation techniques for proteins and peptides and protein digestion, Chapter 2. In: Proteomics in Foods: Principles and Applications, Food Microbiology and Food Safety 2 (Eds: F. Toldrá and L.M.L. Nollet) CrossrefGoogle Scholar

  • Michalková V., Valigurová A., Dindo M.L., Vaňhara J. 2009. Larval morphology and anatomy of the parasitoid Exorista larvarum (Diptera: Tachinidae), with an emphasis on cephalopharyngeal skeleton and digestive tract. Journal of Parasitology, 95, 544–554. http://dx.doi.org/10.1645/GE-1673.1Crossref

  • Milei J., Forcada P., Fraga C.G., Grana D.R., et al., 2007. Relationship between oxidative stress, lipid peroxidation and ultrastructural damage in patients with coronary artery disease undergoing cardioplegic arrest/reperfusion. Cardiovascular Research, 73, 710–719. http://dx.doi.org/10.1016/j.cardiores.2006.12.007CrossrefPubMed

  • Moldovan L., Moldovan N.I. 2004. Oxygen free radicals and redox biology of organelles. Histochemistry and Cell Biology, 122, 395 – 412. CrossrefPubMedGoogle Scholar

  • Moreau S.J., Vinchon S., Cherqui A., Prévost G. 2009. Components of Asobara venoms and their effects on hosts. Advances in Parasitology, 70, 217–232. CrossrefPubMedGoogle Scholar

  • Mylonas C., Kouretas D. 1999. Lipid peroxidation and tissue damage. In Vivo, 13, 295–309PubMedGoogle Scholar

  • Nalini M., Choi J.Y., Je Y.H., Hwang I., Kim Y. 2008. Immunoevasive property of a polydnaviral product, CpBV-lectin, protects the parasitoid egg from hemocytic encapsulation of Plutella xylostella (Lepidoptera: Yponomeutidae). Journal of Insect Physiology, 54, 1125–1131CrossrefPubMedGoogle Scholar

  • Nappi A.J., Vass E., Frey F., Carton Y. 2000. Nitric Oxide involvement in Drosophila immunity. Nitric oxide-Biology and Chemistry, 4, 423–430. CrossrefPubMedGoogle Scholar

  • Narayanaswamy K.C., Devaiah M.C. 1998. Silkworm uzi fly. Zen Publishers, Bangalore, India.Google Scholar

  • Nath B. S., Gupta S. K., Bajpai A. K. 2012. Molecular characterization and phylogenetic relationships among microsporidian isolates infecting silkworm, Bombyx mori using small subunit rRNA (SSU-rRNA) gene sequence analysis. Acta Parasitologica, 57, 342–353. CrossrefPubMedGoogle Scholar

  • Nath B. S., Hassan, W., Rao S. N., Vijayaprakash N.B., Gupta SK., Mohan N.M., Bajpayi A.K. 2011. Genetic diversity among microsporidian isolates from the silkworm, Bombyx mori, as revealed by randomly amplified polymorphic DNA (RAPD) markers. Acta Parasitologica, 56, 333–338. CrossrefGoogle Scholar

  • Pennacchio F., Strand M. R., 2006. Evolution of developmental strategies in parasitic hymenoptera. Annual Review of Entomology, 51, 233–58CrossrefPubMedGoogle Scholar

  • Pradeep A.R., Anitha J., Awasthi A.K., Babu M.A., Geetha M.N., et al. 2012. Activation of autophagic programmed cell death and innate immune gene expression reveals immuno-competence of integumental epithelium in Bombyx mori infected by a dipteran parasitoid. Cell & Tissue Research, 352, 371–385, CrossrefGoogle Scholar

  • Pradeep A.R., Anitha J., Panda A., Pooja M., Awasthi A.K., et al. (2015) Phylogeny of host response proteins activated in silkworm Bombyx mori in response to infestation by dipteran endoparasitoid revealed functional divergence and temporal molecular adaptive evolution. Journal of Clinical & Cellular Immunology, 6, 370. CrossrefGoogle Scholar

  • Rašić S., Rebić D., Hasić S., Rašić I., Delić Šarac M. 2015. Influence of malondialdehyde and matrix metalloproteinase-9 on progression of carotid atherosclerosis in chronic renal disease with cardiometabolic syndrome. Mediators of Inflammation, 2015:614357. .CrossrefPubMedGoogle Scholar

  • Rowell B., Bunsong N., Satthaporn K., Phithamma S., Doungsa-Ard C. (2005) Hymenopteran parasitoids of diamondback moth (Lepidoptera: Ypeunomutidae) in northern Thailand. Journal of Economic Entomology, 98, 449–56PubMedCrossrefGoogle Scholar

  • Schmidt O., Theopold U., Strand M.R. (2001) Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. Bioessays, 23, 344–351PubMedCrossrefGoogle Scholar

  • Strand M R, Noda T. 1991. Alterations in the haemocytes of Pseudoplusia includens after parasitism by Microplitis demolitor. Journal of Insect Physiology 37, 839–850CrossrefGoogle Scholar

  • Valigurová A., Michalková V., Koník P., Dindo M.L., Gelnar M., Vanhara J. 2014. Penetration and encapsulation of the larval endoparasitoid Exorista larvarum (Diptera: Tachinidae) in the factitious host Galleria mellonella (Lepidoptera: Pyralidae). Bulletin of Entomological Research, 104, 203–212. CrossrefPubMedGoogle Scholar

  • Velikova V., Yordanov I., Edreva A. 2000. Oxidative stress and some antioxidant system in acid rain treated bean plants: protective role of exogenous polyamines. Plant Science, 151, 59 – 66. CrossrefGoogle Scholar

  • Wong-ekkabut J., Xu Z., Wannapong T., Tang I-M., Tieleman D.P., Monticelli L. 2007. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophysical Journal, 93, 4225–4236. CrossrefPubMedGoogle Scholar

  • Wu M.L., Ye G.Y., Zhu J.Y., Chen X.X., Hu C. 2008. Isolation and characterization of an immunosuppressive protein from venom of the pupa-specific endoparasitoid Pteromalus puparum. Journal of Invertebrate Pathology, 99, 186–191PubMedCrossrefGoogle Scholar

  • Yagi K. 1998. Simple assay for the level of total lipid peroxides in serum or plasma. Methods in Molecular Biology, 108, 101 – 106. CrossrefGoogle Scholar

  • Ye G.Y., Zhu J.Y., Zhang Z., Fang Q., Cai J., Hu C. 2007. Venom from the endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae) adversely affects host hemocytes: differential toxicity and microstructural and ultrastructural changes in plasmatocytes and granular cells. In: Recent advances in the Biochemistry, Toxicity and mode of action of parasitic wasp venoms. (Eds: D. Rivers, J. Yolder). Kerala, India, Research Signpost, pp. 115– 127Google Scholar

  • Yin H., Xu L., Porter N.A. 2011. Free radical lipid peroxidation: mechanisms and analysis. Chemical Reviews, 111, 5944 – 5972. CrossrefPubMedGoogle Scholar

  • Young S. Y., Yearian W.C. 1990. Transmission of nuclear polyhedrosis virus by the parasitoid Microplitis croceipes (Hymenoptera: Braconidae) to Heliothis virescens (Lepidoptera: Noctuidae) on soybean. Environmental Entomology, 19, 251–256CrossrefGoogle Scholar

  • Zhang G., Lu Z-Q., Jiang H., Asgari S. 2004. Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochemistry and Molecular Biology, 34, 477–483CrossrefPubMedGoogle Scholar

  • Zhang Y.M., Lu X.F., Bhavnani B.R. 2003. Equine estrogens differentially inhibit DNA fragmentation induced by glutamate in neuronal cells by modulation of regulatory proteins involved in programmed cell death. BMC Neurosciences, 4:32, CrossrefGoogle Scholar

  • Zhu J-Y., Ye G-Y., Hu C. 2011. Venom of the endoparasitoid wasp Pteromalus puparum: An overview. Psyche. http://dx.doi.org/10.1155/2011/520926

About the article

Received: 2016-11-03

Revised: 2017-05-25

Accepted: 2017-06-29

Published Online: 2017-10-15

Published in Print: 2017-12-20

Citation Information: Acta Parasitologica, Volume 62, Issue 4, Pages 717–727, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0086.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in