Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 62, Issue 4

Issues

Varroa destructor induces changes in the expression of immunity-related genes during the development of Apis mellifera worker and drone broods

Ewa A. Zaobidna
  • Corresponding author
  • Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowski 1A, 10-957, Olsztyn, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krystyna Żółtowska
  • Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowski 1A, 10-957, Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elżbieta Łopieńska-Biernat
  • Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowski 1A, 10-957, Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-15 | DOI: https://doi.org/10.1515/ap-2017-0094

Abstract

The ectoparasitic mite Varroa destructor has emerged as the major pest of honeybees. Despite extensive research efforts, the pathogenesis of varroosis has not been fully explained. Earlier studies suggested that V. destructor infestation leads to the suppression of the host’s immune system. The aim of this study was to analyze the immune responses of 14 genes in the Toll signal transduction pathways, including effector genes of antimicrobial peptides (AMPs), in developing Apis mellifera workers and drones infested with V. destructor. Four developmental stages (L5 larvae, prepupae, and 2 pupal stages) and newly emerged imagines were analyzed. In workers, the most significant changes were observed in L5 larvae in the initial stages of infestation. A significant increase in the relative expression of 10 of the 14 analyzed genes, including defensin-1 and defensin-2, was observed in infested bees relative to non-infested individuals. The immune response in drones developed at a slower rate. The expression of genes regulating cytoplasmic signal transduction increased in prepupae, whereas the expression of defensin-1 and defensin-2 effector genes increased in P3 pupae with red eyes. The expression of many immunity-related genes was silenced in successive life stages and in imagines, and it was more profound in workers than in drones. The results indicate that V. destructor significantly influences immune responses regulated by the Toll signal transduction pathway in bees. In infested bees, the observed changes in Toll pathway genes varied between life stages and the sexes.

Keywords: Antimicrobial peptide genes; Apis mellifera development; Toll pathway genes; Varroa destructor

References

  • Alaux C., Dantec C., Parrinello H., Le Conte Y. 2011. Nutrigenomics in honey bees: digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC Genomics, 12, 496. CrossrefWeb of SciencePubMedGoogle Scholar

  • Antúnez K., Mendoza Y., Santos E., Invernizzi C. 2013. Differential expression of vitellogenin in honey bees (Apis mellifera) with different degrees of Nosema ceranae infection. Journal of Apicultural Research, 52, 227–234. CrossrefWeb of ScienceGoogle Scholar

  • Aronstein K.A., Saldivar E., Vega R., Westmiller S., Douglas A.E. 2012. How Varroa parasitism affects the immunological and nutritional status of the honey bee, Apis mellifera. Insects, 3, 601–615. CrossrefPubMedGoogle Scholar

  • Boncristiani H., Underwood R., Schwarz R., Evans J.D., Pettis J., vanEngelsdorp D. 2012. Direct effect of acaricides on pathogen loads and gene expression levels of honey bee Apis mellifera. Journal of Insect Physiology, 58, 613–620. CrossrefPubMedGoogle Scholar

  • Bowen-Walker P.L., Gunn A. 2001. The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomologia Experimentalis et Applicata, 101, 207–217. CrossrefGoogle Scholar

  • Brutscher L.M., Daughenbaugh K.F., Flenniken M.L. 2015. Antiviral defense mechanisms in honey bees. Current Opinion in Insect Science, 10, 71–82. .CrossrefWeb of SciencePubMedGoogle Scholar

  • Burgett M., Rucker R.R., Thurman W.N. 2004. Economics and honey bee pollination markets. American Bee Journal, 144, 269–271Google Scholar

  • Chen Y.P., Siede R. 2007. Honey bee viruses. Advances in Virus Research, 70, 33–80. CrossrefWeb of SciencePubMedGoogle Scholar

  • Cytryńska M. 2009. Immunity without antibodies. Postępy Biologii Komórki, 36, 309–324. CrossrefGoogle Scholar

  • Danihlík J., Aronstein K., Petřivalský M. 2015 Antimicrobial peptides: a key component of honey bee innate immunity. Journal of Apicultural Reearch, 54, 123–136. CrossrefGoogle Scholar

  • De Jong D. 1997. Mites: Varroa and other parasites of brood. In: (Eds. Morse, R.A., Flottum, K.) Honey Bee Pests, Predators and Diseases. A.I. Root Company, Medina, 278–327.Google Scholar

  • Dietemann V., Neumann P., Ellis J.D. 2013. The Coloss Beebook volume 1: Standard methods for Apis mellifera research. Journal of Apicultural Research, 52. CrossrefWeb of ScienceGoogle Scholar

  • Di Prisco G., Annoscia D., Margiotta M., Ferrara R., Varricchio P., Zanni V., et al. 2016. A mutualistic symbiosis between a parasite mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences 113, 3203–3208. CrossrefGoogle Scholar

  • Ellis J.D. 2001. The future of Varroa control: Integrating current treatments with the latest advancements. American Bee Journal, 141, 127–131Google Scholar

  • Erler S., Popp M., Lattorff H.M.G. 2011. Dynamics of immune system gene expression upon bacterial challenge and wounding in social insect (Bombus terrestris). PLoS One, 6, e1826. CrossrefWeb of ScienceGoogle Scholar

  • Evans J.D., Spivak M. 2010. Socialized medicine: individual and communal disease barriers in honey bees. Journal of Invertebrate Pathology, 103, 62–72. CrossrefWeb of ScienceGoogle Scholar

  • Evans J.D., Aronstein K., Chen Y.P., Hetru C., Imler J.L., Jiang H., et al. 2006. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 15, 645–656. .CrossrefPubMedGoogle Scholar

  • Frączek R., Żółtowska K,. Lipiński Z. Dmitryjuk M. 2013. The mutual influence of proteins from Varroa destructor extracts and from honeybee haemolymph on their proteolytic activity – in vitro study. Acta Parasitologica, 58, 317–323. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Gätschenberger H., Gimple O., Tautz J., Beier H. 2012. Honey bee drones maintain humoral immune competence throughout all life stages in the absence of vitellogenin production. Journal of Experimental Biology, 215, 1313–1322. CrossrefWeb of ScienceGoogle Scholar

  • Gätschenberger H., Gimple O., Tautz J., Beier H. 2012. Honey bee drone maintain humoral immune competence throughout all life stages in the absence of vitellogenin production. Journal Experimental Biology, 215, 1313–1322. CrossrefGoogle Scholar

  • Genersch E. 2010. Honey bee pathology: current threats to honey bees and beekeeping. Applied Microbiology and Biotechnology, 87: 87–97. CrossrefWeb of SciencePubMedGoogle Scholar

  • Garedew A., Schmolz E., Lamrecht I. 2004. The energy and nutrition demand of the parasitic life of the mite Varroa destructor. Apidologie, 35: 419–430. .CrossrefGoogle Scholar

  • Gliński Z., Buczek K. 2003. Response of the Apoidea to fungal infections. Apiacta, 38, 183–189Google Scholar

  • Goulson D., Nicholls E., Botias C., Rotheray E.L. 2015. Combined stress from parasites, pesticides and lack of flowers drives bee declines. Science, 347, 1255957. CrossrefGoogle Scholar

  • Gregorc A., Evans J.D., Scharf M., Ellis J.D. 2012. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor). Journal of Insect Physiology, 58, 1042–1049. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Gregory P.G., Evans J.D., Rinderer T.E., De Gruzman L. 2005. Conditional immune-gene suppression of honeybees parasitized by Varroa mites. Journal of Insect Science, 5, 1–5. CrossrefGoogle Scholar

  • Hamiduzzaman M.M., Sinia A., Guzman-Novoa E., Goodwin P. 2012. Entomopathogenic fungi as potential biocontrol agents of ecto-parasitic mite, Varroa destructor, and their effect on the immune response of honey bees (Apis mellifera L.). Journal of Invertebrate Pathology, 111, 237–243. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Jay C.S. 1963. The development of honeybees in the their cells. Journal Apiculture Researe, 2, 117–134. CrossrefGoogle Scholar

  • Kanbar G., Engels W. 2005. Communal use of integumental wounds in honey bee (Apis mellifera) pupae multiply infested by the ectoparasitic mite Varroa destructor. Genetics and Molecular Research, 4, 465–472Google Scholar

  • Khongphinitbunjong K., de Guzman L.I., Tarver M.R., Rinderer T.E., Chen Y., Chantawannakul P. 2015. Differential viral levels and immune gene expression in three stocks of Apis mellifera induced by different numbers of Varroa destructor. Journal of Insect Physiology, 72, 28–34. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Kuster R.D., Boncristiani H.F., Rueppell O. 2014. Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae. The Journal of Experimental Biology, 217, 1710–1718. CrossrefPubMedGoogle Scholar

  • Lemaitre B., Hoffmann J.A. 2007. The host defense of Drosophila melanogaster. Annual Review of Immunology, 25, 697–743. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Li W.F., Ma G.X., Zhou X.X. 2006. Apidaecin-type peptides: biodiversity, structurefunction relationships and mode of action. Peptides, 27, 2350–2359. CrossrefGoogle Scholar

  • Lourenço A.P., Guidugli – Lazzarini K.R., Freitas F.C., Bitondi M.M., Simoes Z.L. 2013. Bacterial infection activates the immune system response and dysregulates microRNA expression in honey bees. Insect Biochemistry and Molecular Biology, 43, 474–82. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Moore P.A., Wilson M.E., Skinner J.A. 2016. Honey Bee Viruses, the Deadly Varroa Mite Associates. Extension Bee Health CoP, http://www.extension.org/pages/71172/honey–bee-viruses-the-deadly-varroa-mite-associates#.VIcA08ma8UZ

  • Navajas M., Migeon A., Alaux C., Martin-Magniette M.L., Robinson G.E., Evans J.D., Cros-Arteil S., Crauser D., Le Conte Y. 2008. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics, 9, 301. CrossrefWeb of SciencePubMedGoogle Scholar

  • Nazzi F., Le Conte Y. 2017. Ecology of Varroa destructort, the major ectoparasite of the Western honey bee, Apis mellifera. Annual Review of Entomology, 61, 417–432. CrossrefGoogle Scholar

  • Nazzi F., Brown S.P., Annoscia D., Del Piccolo F., Di Prisco G., Varricchio P., Vedova G.D., Cattonaro F., Caprio E., Pennacchio F. 2012. Synergistic parasite–pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathogens, 8, e1002735. CrossrefWeb of SciencePubMedGoogle Scholar

  • Otvos L.J., Insung O., Rogers M.E., Consolvo P.J., Condie B.A., Lovas S., Bulet P., Blaszczyk-Thurin M. 2000. Interaction between heat shock proteins and 973 antimicrobial peptides. Biochemistry, 39, 14150–14159CrossrefGoogle Scholar

  • Pfaffl M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45. .CrossrefPubMedGoogle Scholar

  • Randolt K., Gimple O., Geissendorfer J., Reinders J., Prusko C., Mueller M.J., Albert S., Tautz J., Beier H. 2008. Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. Archives of Insect Biochemistry and Physiology, 69, 155–167. CrossrefWeb of SciencePubMedGoogle Scholar

  • Rosenkranz P., Aumeier P., Ziegelmann B. 2010. Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, 96–119. .CrossrefWeb of ScienceGoogle Scholar

  • Sammataro D., Gerson U., Needham G. 2000. Parasitic mites of honey bees: life history, implications and impact. Annual Review of Entomology, 45, 519–548. CrossrefPubMedGoogle Scholar

  • Strachecka A., Borsuk G., Paleolog J., Olszewski K., Chobotow J. 2012. Antipathogenic activity on the body surface of adult workers Apis mellifera. Veterinary Medicine-Science and Practice, 68, 290–292Google Scholar

  • Strachecka A., Borsuk G., Olszewski K., Paleolog J., Lipiński Z. 2013. Proteolysis on the body surface of pyrethroid-sensitive and resistant Varroa destructor. Acta Parasitologica 58, 64–69. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Yang X., Cox-Foster D.L. 2007. Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge. Parasitology, 134, 405–412. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Yang X., Cox-Foster D.L. 2005. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences, 102, 7470–7475. CrossrefGoogle Scholar

  • Zaobidna E.A., Żółtowska K., Łopieńska-Biernat E. 2015. Expression of the prophenoloxidase gene and phenoloxidase activity, during the development of Apis mellifera brood infected with Varroa destructor. Journal of Apicultural Science, 59, 85–93. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-04-12

Revised: 2017-08-02

Accepted: 2017-08-03

Published Online: 2017-10-15

Published in Print: 2017-12-20


Citation Information: Acta Parasitologica, Volume 62, Issue 4, Pages 779–789, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0094.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in