Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 62, Issue 4

Issues

Humoral response of mice infected with Toxocara canis following different infection schemes

Jan Novák
  • Corresponding author
  • Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucie Panská
  • Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Praha 2, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomáš Macháček
  • Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Praha 2, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Libuše Kolářová
  • Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Horák
  • Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Praha 2, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-15 | DOI: https://doi.org/10.1515/ap-2017-0099

Abstract

The study was focused on the dynamics of humoral response to Toxocara canis excretory-secretory antigens (TES antigens) in mice experimentally infected by T. canis L3 larvae in different ways. In particular, we compared the effect of infection with two doses of 1000 larvae vs. repeated infections with a low number of larvae (daily infection with 10 larvae and weekly infection with 100 larvae in the course of 22 weeks). In ELISA, all infections, including both schemes with lower larval doses, elicited significant antibody response. Elevated levels of total IgE and TES-antigen-specific IgM were detected on day 12 after the first infection, followed by IgG and IgG1, and later by IgG3, IgG2a and IgG2b; specific IgE response was not detected. It seems that the high levels of IgM and IgG1 represent the best markers of infection. In addition, gradual increase of IgG2a and IgG2b could help in determination of the infection course. As a byproduct of our work, a new method of infection by repeated drinking of larvae was introduced; it minimizes the pain and discomfort for the experimental mice.

Keywords: Toxocara canis; humoral immune response; antibody response; excretory–secretory antigens; paratenic host

References

  • Antolová D., Reiterová K., Stanko M., Zalesny G., Fričová J., Dvorožňáková E. 2013. Small mammals: paratenic hosts for species of Toxocara in eastern Slovakia. Journal of Helminthology, 87, 52–58. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Boldiš V., Ondriska F., Špitálská E., Reiterová K. 2015. Immunodiagnostic approaches for the detection of human toxocariasis. Experimental Parasitology, 159, 252–258. CrossrefPubMedGoogle Scholar

  • Bowman D.D., Mika-Grieve M., Grieve R.B. 1987. Circulating excretory-secretory antigen levels and specific antibody response in mice infected with Toxocara canis. The American Journal of Tropical Medicine and Hygiene, 36, 75–82PubMedCrossrefGoogle Scholar

  • Chan P.W., Anuar A.K., Fong M.Y., Debruyne J.A., Ibrahim J. 2001. Toxocara seroprevalence and childhood asthma among Malaysian children. Pediatrics International, 43, 350–353. CrossrefGoogle Scholar

  • Cox D.M., Holland C.V. 2001. Influence of mouse strain, infective dose and larval burden in the brain on activity in Toxocara-infected mice. Journal of Helminthology, 75, 23–32PubMedCrossrefGoogle Scholar

  • De Savigny D.H. 1975. In vitro maintenance of Toxocara canis larvae and a simple method for the production of Toxocara ES antigen for use in serodiagnostic tests for visceral larva migrans. Journal of Parasitology, 61, 781–782CrossrefGoogle Scholar

  • De Savigny D.H., Voller A., Woodruff A.W. 1979. Toxocariasis: serological diagnosis by enzyme immunoassay. Journal of Clinical Pathology, 32, 781–782Google Scholar

  • Dlugosz E., Wisniewski M. 2016. Toxocara canis glycans influence antigen recognitionby mouse IgG1 and IgM antibodies. Acta Parasitologica, 61, 191–194. CrossrefPubMedGoogle Scholar

  • Fan C-K., Lin Y.H., Hung C.C., Su K.E. 2004. Larval migratory behavior of long-term-maintained Toxocara canis embryonated eggs in mice. Taiwan Veterinary Journal, 30, 99–105Google Scholar

  • Fan C-K., Liao C-W., Cheng Y-C. 2013. Factor affecting disease manifestation of toxocariasis in humans: Genetics and environment. Veterinary Parasitology, 193, 342–352. CrossrefPubMedGoogle Scholar

  • Fan C-K., Holland C.V., Loxton K., Barghouth U. 2015. Cerebral toxocariasis: silent progression to neurodegenerative disorders? Clinical Microbiology Reviews, 28(3), 663–686. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Fillaux J., Mangaval F.J. 2013. Laboratory diagnosis of human toxocariasis. Veterinary Parasitology, 193, 327–336. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Fenoy S., Rodero M., Pons E., Aguila C., Cuellar C. 2008. Follow-up of antibody avidity in BALB/c mice infected with Toxocara canis. Parasitology, 135, 725–733. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Fonseca G.R, Santos S.V., Chieffi P.P., Paula F.M., Gryschek R.C.B., Lescano S.A.Z. 2017. Experimental toxocariasis in BALB/c mice: relationship between parasite inoculum and the IgG immune response. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro, 112, 382–386. CrossrefGoogle Scholar

  • Forstl M., Buchta V., Psohlavec J., Čermák P., Čermáková Z., Urban J., Chrzová M. 2004. Diagnostics of larval toxocariasis. Klinická mikrobiologie a infekční lêkařství, 10, 181–185PubMedGoogle Scholar

  • Galvin T.J. 1964. Experimental Toxocara canis infection in chicken and pigeons. Journal of Parasitology, 50, 124–127CrossrefGoogle Scholar

  • Gawor J., Borecka A., Marczynska M., Dobosz S., Zarnowska-Prymek H. 2015. Risk of human toxocarosis in Poland due to Toxocara infection of dogs and cats. Acta Parasitologica, 60, 99–104. CrossrefWeb of ScienceGoogle Scholar

  • Hamilton C.M., Stafford P., Pinelli E., Holland C.V. 2006. A murine model for cerebral toxocariasis: characterization of host susceptibility and behavior. Parasitology, 132, 791–801. CrossrefPubMedGoogle Scholar

  • Hamilton C.M., Brandes S., Holland C., Pinelli E. 2008. Cytokine expression in the brain of Toxocara canis-infected mice. Parasite Immunology, 30, 181–185. CrossrefPubMedGoogle Scholar

  • Havasiová-Reiterová K., Tomašovičová O., Dubinský P. 1995. Effect of various doses of infective Toxocara canis and Toxocara cati eggs on the humoral response and distribution of larvae in mice. Parasitology Research, 81, 13–17PubMedCrossrefGoogle Scholar

  • Holland C.V., Hamilton C.M. 2013. Review: The significance of cerebral toxocariasis: a model system for exploring the link between brain involvement, behavior and the immune response. Journal of Experimental Biology, 216, 78–83. CrossrefGoogle Scholar

  • Hubner J., Uhlíková M., Leissová M. 2001. Diagnosis of the early phase of larval toxocariasis using IgG avidity. Epidemiologie, Mikrobiologie, Imunologie, 50, 67–70Google Scholar

  • Janecek E., Beineke A., Schnieder T., Strube C. 2014. Neurotoxocarosis: marked preference of Toxocara canis for the cerebrum and T. cati for the cerebellum in the paratenic model host mouse. Parasites & Vectors, 7, 194. CrossrefWeb of ScienceGoogle Scholar

  • Jin Y., Shen C., Huh S., Sohn W.M., Choi M.H., Hong S.T. 2013. Serodiagnosis of toxocariasis by ELISA using crude antigen of Toxocara canis larvae. Korean Journal of Parasitology, 51, 433–439. CrossrefWeb of ScienceGoogle Scholar

  • Kolbeková P., Kolářová L., Větvička D., Syrůček M. 2011a. Imaging of Toxocara canis larvae labelled by CFSE in BALB/c mice. Parasitology Research, 108, 1007–1014. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Kolbeková P., Větvička D., Svoboda J., Skírnissson K., Leissová M., Syrůček M., Marečková H., Kolářová L. 2011b. Toxocara canis larvae reinfectiong BALB/c mice exhibit accelerated speed of migration to the CNS. Parasitology Research, 109, 1267–1278. CrossrefGoogle Scholar

  • Lloyd S. 1993. Toxocara canis: the dog. In: (Eds J.W. Lewis, R.M. Maizels) Toxocara and Toxocarariasis: Clinical, epidemiological and molecular perspectives. London, Institute of Biology and the British Society for Parasitology, 11–22Google Scholar

  • Mangaval J.F., Galindo V., Glickmann L.T., Clanet M. 1997. Human Toxocara infection of the central nervous system and neurological disorders: a case-control study. Parasitology, 115, 537–543CrossrefPubMedGoogle Scholar

  • Ngugi A.K., Bottomley C., Kleinschmidt I., Wagner R.G., Kakooza-Mwesige A., Ae-Ngibise K., Owusu-Agyei S., Masanja H., Kamuyu G., Odhiambo R., Chengo E., Sander J.W., Newton C.R., SEEDS Group. 2013. Prevalence of active convulsive epilepsy in sub-Saharan Africa and associated risk factors: cross-sectional and case-control studies. The Lancet Neurology, 12, 253–263. CrossrefPubMedGoogle Scholar

  • Noordin R., Smith H.V., Mohamad S., Maizels R.M., Fong M.Y. 2005. Comparison of IgG-ELISA and IgG4-ELISA for Toxocara serodiagnosis. Acta Tropica, 93, 57–62. CrossrefPubMedGoogle Scholar

  • Pilarczyk B., Doligalska M.J., Donskow-Schmelter K., Balicka-Ramisz A., Ramisz A. 2008. Selenium supplementation enhances the protective response to Toxocara canis larvae in mice. Parasite Immunology, 30, 394–402. CrossrefWeb of SciencePubMedGoogle Scholar

  • Pinelli E., Withagen C., Fonville M., Verlaan A., Dormans J., van Loveren H., Nicoll G., Maizels R.M., van der Giessen J. 2005. Persistent airway hyper-responsiveness and inflammation in Toxocara canis-infected BALB/c mice. Clinical and Experimental Allergy, 35, 826–832. CrossrefGoogle Scholar

  • Pinelli E., Brandes S., Dormans J., Fonville M., Hamilton C.M., van der Giessen J. Toxocara canis: (2007): Effect of inoculum size on pulmonary pathology and cytokine expression in BALB/c mice. Experimental Parasitology, 115, 76–82. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Quattrocchi G., Nicoletti A., Marin B., Bruno E., Druet-Cabanac M., Preux P.M. 2012. Toxocariasis and epilepsy: systematic review and metaanalysis. PLoS Neglected Tropical Diseases, 6, e1775. .CrossrefGoogle Scholar

  • Ranasuriya G., Mian A., Boujaoude Z., Tsigrelis C. 2014. Pulmonary toxocariasis: a case report and literature review. Infection, 42: 575–578. CrossrefWeb of SciencePubMedGoogle Scholar

  • Reiterová K., Antolová D., Zalesny G., Stanko M., Špilovská S., Mošanský L. 2013. Small rodents – permanent reservoirs of toxocarosis in different habitats of Slovakia. Helminthologia, 50, 20–26. CrossrefWeb of ScienceGoogle Scholar

  • Roldan WH., Elefant GR., Ferreira AW. 2017. Immunoglobulin M antibodies are not specific for serodiagnosis of human toxocariasis. Parasite Immunology, 39, e12447. CrossrefWeb of ScienceGoogle Scholar

  • Schoenardie E.R., Scaini C.J., de Costa de Avila L.F., Sperotto R.L., Borsuk S., Felicetti C.D.F., Pepe M., Berne M.E.A. 2014. Determination of avidity in BALB/c mice experimentally infected with Toxocara canis. Brazilian Journal of Veterinary Parasitology, 23(4), 403–406. CrossrefGoogle Scholar

  • Smith H.V. 1993. Antibody reactivity in toxocariasis. In: (Eds. J.W. Lewis, R.M. Maizels) Toxocara and Toxocarariasis: Clinical, epidemiological and molecular perspectives. London, Institute of Biology and the British Society for Parasitology, 91–109Google Scholar

  • Smith H.V., Holland C.W., Taylor M., Mangaval J.F., Schantz P., Maizels R.M. 2009. How common is human toxocariasis? Towards standardizing our knowledge. Trends in Parasitology, 25, 182–188. CrossrefWeb of ScienceGoogle Scholar

  • Watthanakulpanich D., Smith H.V., Hobbs G., Whalley A., Billington D. 2008. Application of Toxocara canis excretory-secretory antigens and IgG subclass antibodies (IgG1-4) in serodiagnostic assay of human toxocariasis. Acta Tropica, 106, 90–95. CrossrefPubMedGoogle Scholar

  • Yamasaki H., Araki K., Lim P.K., Zasmy N., Mak J.W., Taib R., Aoki T. 2000. Development of a highly specific recombinant Toxocara canis second-stage larva excretory-secretory antigen for Immunodiagnosis of human toxocariasis. Journal of Clinical Microbiology, 38, 1409–1413PubMedGoogle Scholar

About the article

Received: 2017-06-08

Revised: 2017-08-02

Accepted: 2017-08-11

Published Online: 2017-10-15

Published in Print: 2017-12-20


Disclosures: The authors declare no conflict of interest.


Citation Information: Acta Parasitologica, Volume 62, Issue 4, Pages 823–835, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0099.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Lucas Moreira dos Santos, Micaele Quintana de Moura, Morgana Lüdtke Azevedo, Giuli Argou Marques, Luciana Farias da Costa Avila, Carlos James Scaini, Maria Elisabeth Berne, Ângela Nunes Moreira, and Fabricio Rochedo Conceição
Parasite Immunology, 2018, Volume 40, Number 8, Page e12568

Comments (0)

Please log in or register to comment.
Log in