Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

More options …
Volume 63, Issue 1


Phylogeny and cocoon production in the parasitic leech Myzobdella lugubris Leidy, 1851 (Hirudinidae, Piscicolidae)

Naim Saglam
  • Dept. of Aquaculture and Fish Diseases, Fisheries Faculty, Firat University, 23119 Elazig, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ralph Saunders
  • Biology Department, Rutgers – The State University of New Jersey, 315 Penn Street, Camden, NJ 08102, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shirley A. Lang
  • Biology Department, Rutgers – The State University of New Jersey, 315 Penn Street, Camden, NJ 08102, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel H. Shain
  • Corresponding author
  • Biology Department, Rutgers – The State University of New Jersey, 315 Penn Street, Camden, NJ 08102, U.S.A
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-17 | DOI: https://doi.org/10.1515/ap-2018-0002


Myzobdella lugubris is a commensal leech on crustaceans and a parasite to fishes, surviving predominantly in brackish waters throughout North America. Specimens in this study were collected within the tidal zone of the Delaware River basin (New Jersey and Pennsylvania). To compare regional M. lugubris specimens, defined characters were scored after dorsal and ventral dissections, and phylogenetic relationships were resolved using cytochrome c oxidase subunit 1 (CO1), 12S ribosomal RNA (rDNA) and 18S rDNA gene fragments. Variance between regional populations was low, suggesting recent dispersal events and/or strong evolutionary constraints. The reproductive biology of M. lugubris was explored by quantitative analysis of secreted cocoons. Specimens produced 32.67 ± 4.50 cocoons with fertilization ratios of 88.1% and hatching times of 48 ± 7 days at 17°C under laboratory conditions. At 22°C, 46 ± 28 cocoons were produced with fertilization ratios of 70.27% and hatching times of 28 ± 5 days. Surprisingly, each cocoon supported only one embryo, which is unusual among oligochaetes.

Keywords: Reproduction; oligochaete; channel catfish; crustacean


  • Amin O.M. 1981. Leeches (Hirudinea) from Wisconsin, and the description of the spermatophore of Placobdella ornate. Transactions of the American Microscopical Society, 100, 42–51. CrossrefGoogle Scholar

  • Anisimova M., Gascuel O. 2006. Approximate likelihood ratio test for branchs: A fast, accurate and powerful alternative. Systematic Biology, 55, 539–52. CrossrefGoogle Scholar

  • Apakupakul, K., Siddall, M.E., Burreson, E.M. 1999. Higher level relationships of leeches (Annelida : Clitellata : Euhirudinea) based on morphology and gene sequences. Molecular Phylogenetics and Evolution, 12, 350–359. CrossrefPubMedGoogle Scholar

  • Appy R.G., Cone D.K. 1982. Attachment of Myzobdella lugubris (Hirudinea: Piscicolidae) to Logperch, Percina caprodes, and Brown Bullhead, Ichtalurus nebulosus. Transactions of the American Microscopical Society, 101, 135–141. CrossrefGoogle Scholar

  • Becker D.A., Heard R.G., Holmes P.D. 1966. A preimpoundment survey of the helminth and copepod parasites of Micropterus spp. of Beaver Reservoir in northwest Arkansas. Transactions of the American Fisheries Society, 95, 23–34. CrossrefGoogle Scholar

  • Becker C.D., Dauble D.D. 1979. Records of Piscivorus Leeches (Hirudinea) from The Central Columbia River, Washington State. Fishery Bulletin, 76, 926–931Google Scholar

  • Borda E., Siddall M.E. 2004a. Arhynchobdellida (Annelida: Oligochaeta: Hirudinida) phylogenetic relationships and evolution. Molecular Phylogenetics and Evolution, 30, 213–225. CrossrefGoogle Scholar

  • Borda E., Siddall M.E. 2004b. Review of the evolution of life history strategies and phylogeny of the Hirudinida (Annelida: Oligochaeta). Lauterbornia, 52, 5–25Google Scholar

  • Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Phylogenetics and Evolution, 17, 540–552. CrossrefGoogle Scholar

  • Chevenet F., Brun C., BanulsAL., Jacq, B., Chisten R. 2006. Tree-Dyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics, 7, 439. CrossrefPubMedGoogle Scholar

  • Daniels B.A., Sawyer R.T. 1975. The biology of the leech Myzobdella lugubris infesting blue crabs and catfish. Biological Bulletin, 148, 193–198. CrossrefGoogle Scholar

  • Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 19, 1792–1797Google Scholar

  • Font W.F. 2003.The Global Spread of Parasites: What Do Hawaiian Streams Tell Us? BioScience, 53, 1061–1067. CrossrefGoogle Scholar

  • Friend M. 1999. Nasal Leeches. Chapter 34. In: Friend, M. & Franson, J.C. (Eds). Field manual of wildlife diseases: general field procedures and diseases of birds. Madison, WI: US Geol. Survey, National Wildlife Health Center. pp. 245–92Google Scholar

  • Goloboff P.A., Farris J.S., Nixon K.C. 2008. TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786. CrossrefGoogle Scholar

  • Guindon S., Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704. CrossrefPubMedGoogle Scholar

  • Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98Google Scholar

  • Higgins D., Thompson J., Gibson T., ThompsonJ.D., Higgins, D.G., Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. CrossrefPubMedGoogle Scholar

  • Klemm D. J. 1972. Biota of Freshwater Ecosystems Identification Manual No 8. The leeches (Annelida: Hirudinea) of North America. Environmental Protection Agency Project No 18050ELD. The University of Michigan, Ann Arbor, Michigan. pp. 53Google Scholar

  • Klemm D.J. 1982. The leeches (Annelida: Hirudinea) of North America. Cincinnati, Aquatic Biology Section, Environmental Monitoring and Support Laboratory, United States Environmental Protection AgencyGoogle Scholar

  • Klemm D.J. 1985. Freshwater leeches (Annelida: Hirudinea). In Klemm DJ, editor. A guide to freshwater Annelida (Polychaeta, naidid and tubificid Oligochaeta, and Hirudinea) of North America. Dubuque: Kendall Hunt Publishing Co. pp. 198Google Scholar

  • Klemm D.J. 1995. Identification guide to the freshwater leeches (Annelida: Hirudinea) of Florida and other southern states. Tallahassee: Florida Department of Environmental Protection. pp. 82Google Scholar

  • Kutschera U., Wirtz P. 2001. The evolution of parental care in freshwater leeches. Theory in Biosciences, 120, 115–137. CrossrefGoogle Scholar

  • Kutschera U. 2016. Sex versus gender in sea urchins and leeches two centuries after Lamarck 1816. Journal of Marine Science: Research and Development, 6/5:1–3Google Scholar

  • Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. 2007. ClustalW and ClustalX, version 2. Bioinformatics, 23 2947–2948. CrossrefGoogle Scholar

  • Mason T.A., McIlroy P.J., Shain D.H. 2004. A cysteine-rich protein in the Theromyzon (Annelida: Hirudinea) cocoon membrane. Febs Letters, 561, 167–172. CrossrefPubMedGoogle Scholar

  • Mason T.A., Sayers C.W., Paulson T.L., Coleman J., Shain D.H. 2005. Cocoon deposition and hatching in the aquatic leech, Theromyzon tessulatum (Annelida, Hirudinea, Glossiphoniidae). American Midland Naturalist, 154, 78–87. CrossrefGoogle Scholar

  • Meyer M.C. 1940. A revision of the leeches (Piscicolidae) living on fresh-water fishes in North America. Transactions of the American Microscopical Society 59, 354–376. CrossrefGoogle Scholar

  • Meyer M.C. 1946. Further notes on the leeches (Piscicolidae) living on fresh-water fishes of North America. Transactions of the American Microscopical Society 65, 237–249. CrossrefPubMedGoogle Scholar

  • Moore J.P. 1946. The anatomy and systematic position of Myzobdella lugubris Leidy (Hirudinea). Notulae naturae of the Academy of Natural Sciences of Philadelphia, 184, 1–12Google Scholar

  • Moser W.E., Klemm D.J., Richardson D.J., Wheeler B.A., Trauth S.E., Daniels B.A. 2006. Leeches (Annelida: Hirudinida) of Northern Arkansas. Journal of the Arkansas Academy of Science, 60, 84–95Google Scholar

  • Noga E.J., Bullis R.A., Miller G.C. 1990. Epidemic oral ulceration in largemouth bass (Micropterus salmoides) associated with the leech Myzobdella lugubris. Journal Wildlife Diseases, 26, 132–134. CrossrefGoogle Scholar

  • Posada D., Buckley T.R. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53, 793–808. CrossrefPubMedGoogle Scholar

  • Posada D., Crandall K.A. 1998. Modeltest: testing the modelof DNA substitution. Bioinformatics, 14, 817–818. CrossrefGoogle Scholar

  • Rambaut A. 2016. FigTree v1.4.2; Molecular evolution, phylogenetics and epidemiology. http://tree.bio.ed.ac.uk/software/figtree/

  • Ronquist F., Huelsenbeck J. and Teslenko M. 2011. Draft MrBayes version 3.2 Manual: Tutorials and Model Summaries. pp. 172Google Scholar

  • Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. CrossrefPubMedGoogle Scholar

  • Rossi A.M., Saidel W.M., Marotta R., Saglam N., Shain D.H. 2013. Operculum ultrastructure in leech cocoons. Journal Morphology, 274, 940–946. CrossrefGoogle Scholar

  • Rossi A.M, Saidel W.M., Gravante C., Sayers C.W., Shain D.H. 2016. Mechanics of cocoon secretion in a segmented worm (Annelida: Hirudinidae). Micron, 86, 30–35. CrossrefGoogle Scholar

  • Sambrook J., Russell, D.W. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar

  • Sawyer R.T. 1972. North American freshwater leeches, exclusive of the Piscicolidae, with a key to all Species. University of Illinois Press, Urbana, Chicago and New YorkGoogle Scholar

  • Sawyer R.T. 1986. Leech Biology and Behavior. Vol. 1–3. Oxford University Press, New YorkGoogle Scholar

  • Sawyer R.T., Lawler A.R., Overstreet R. M. 1975. Marine leeches of the eastern United States and the Gulf of Mexico with a key to the species. Journal of Natural History, 9, 633–667. CrossrefGoogle Scholar

  • Sawyer R.T., Shelley R.M. 1976. New records and species of leeches (Annelida: Hirudinea) from North and South Carolina. Journal of Natural History, 10, 65–97. CrossrefGoogle Scholar

  • Sayers C.W., Coleman J., Shain D.H. 2009. Cell dynamics during cocoon secretion in the aquatic leech, Theromyzon tessulatum (Annelida: Clitellata: Glossiphoniidae). Tissue Cell, 41, 35–42. CrossrefPubMedGoogle Scholar

  • Schramm J.C., Hardman C.H., Tarter D.C. 1981. The occurrence of Myzobdella lugubris and Piscicolaria reducta (Hirudinea: Piscicolidae) on fishes from West Virginia. Transactions of the American Microscopical Society, 100, 427–428. CrossrefGoogle Scholar

  • Siddall M. E., Burreson E.M. 1995. Phylogeny of the Euhirudinea: Independent evolution of blood feeding by leeches? Canadian Journal of Zoology, 73, 1048–1064. CrossrefGoogle Scholar

  • Trauger D.L., Bartonek J.C. 1977. Leech parasitism of waterfowl in North America: Wildfowl, 28, 142–152Google Scholar

  • Troxel, D.J., 2010. Parasites of Largemouth Bass (Micropterus salmoides) in Northern California. A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of The Requirements for the Degree Masters of Science Natural Resources, Fisheries, pp.59Google Scholar

  • Utevsky S., Trontelj P. 2004. Phylogenetic relationships offish leeches (Hirudinea, Piscicolidae) based on mitochondrial DNA sequences and morphological data. Zoologica Scripta 33, 375–385. CrossrefGoogle Scholar

  • Wilkialis J., Davies R.W. (1980) The Reproductive-Biology of Theromyzon tessulatum (Glossiphoniidae-Hirudinoidea), with Comments on Theromyzon rude. Journal Zoology, 192, 421–429. CrossrefGoogle Scholar

  • Williams J. I., Burreson E.M. (2006). Phylogeny of the fish leeches (Oligochaeta, Hirudinida, Piscicolidae) based on nuclear and mitochondrial genes and morphology. Zoologica Scripta, 35, 627–639. CrossrefGoogle Scholar

  • Williams Jr., E.H., Bunkley-Williams L., Burreson E.M. (1994) Some New Records of Marine and Freshwater Leeches from Caribbean, Southeastern U.S.A., Eastern Pacific, and Okinawan Animals. Journal of The Helminthological Society of Washington, 61, 133–138Google Scholar

  • Wirchansky B.A., Shain D.H. 2010. A new species of Haemopis (Annelida: Hirudinea): Evolution of North American terrestrial leeches. Molecular Phylogenetics and Evolution, 54, 226–234. CrossrefPubMedGoogle Scholar

  • Wrona F.J., Linton L.R., Davies R.W. 1987 Reproductive success and growth of two species of Erpobdellidae: the effect of water temperature. Canadian Journal of Zoology, 65, 1253– 1256. CrossrefGoogle Scholar

About the article

Received: 2017-04-06

Revised: 2017-09-19

Accepted: 2017-09-21

Published Online: 2018-01-17

Published in Print: 2018-03-26

Citation Information: Acta Parasitologica, Volume 63, Issue 1, Pages 15–26, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0002.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in