Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 63, Issue 1

Issues

Molecular target analysis of stearoyl-CoA desaturase genes of protozoan parasites

He Lu
  • Corresponding author
  • Department of Microbiology, Chongqing Medical University, Chongqing 400016, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xin Qin
  • Department of Microbiology, Chongqing Medical University, Chongqing 400016, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jing Zhang
  • Department of Microbiology, Chongqing Medical University, Chongqing 400016, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shuang Zhang
  • Department of Microbiology, Chongqing Medical University, Chongqing 400016, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yu Zhu
  • Department of Immunology, Chongqing Medical University, Chongqing 400016, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wei Hua Wu
  • Department of Microbiology, Chongqing Medical University, Chongqing 400016, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-17 | DOI: https://doi.org/10.1515/ap-2018-0006

Abstract

Protozoan parasites can synthesize polyunsaturated fatty acids. They possess stearoyl-CoA desaturase to convert stearate into oleate and linoleate. Stearoyl-CoA desaturase are the key enzymes required for the synthesis of unsaturated fatty acids. It seems attractive to evaluate the possibility of using unsaturated fatty acid biosynthesis pathways as drug targets. In this study, the authors investigate codon usage bias, base composition variations and protein sequence in ten available complete stearoyl-CoA desaturase gene sequences from Toxoplasma gondii, Neospora caninum etc. The results show that fatty acid desaturase genes GC content high of parasitic protozoa genes, GC content up to 63.37%, while fatty acid desaturase genes of parasitic protozoa prefers to use codon ending with G/C. In addition, the expected curve was also drawn to reveal the relationship of ENC and GC3s when the codon usage was only subjected to the nucleotide composition constraint. The genes lied on the expected curve in ENC-plot, indicating nucleotide composition constraint played a role in the condon usage pattern. Protein analysis, we find that all proteins are stearoyl-CoA desaturase, have sites of iron-binding active centers and contain three conserved His-rich motifs. If stearoyl-CoA desaturase is unusual to these parasites, it provides basis as a promising target for the development of selective chemical intervention. Therefore, the Bioinformatics analysis of protein and codon can help improve the work of genetic engineering and drug screening.

Keywords: Stearoyl-CoA desaturase gene; protozoan parasites; bioinformatics analysis

References

  • Butt A.M., Nasrullah I., Tong Y. 2014. Genome-wide analysis of codon usage and influencing factors in chikungunya viruses. PLoS One, 9, e90905. CrossrefWeb of SciencePubMedGoogle Scholar

  • Falcone D.L., Ogas J.P., Somerville C.R. 2004. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biology, 4, 17PubMedCrossrefGoogle Scholar

  • Fujita H., Yamagami T., Ohshima K. 2003. Long-term ingestion of Touchi-extract, an a-glucosidase inhibitor, by borderline and mild type-2 diabetic subjects is safe and significantly reduces blood glucose levels. Nutrition Research, 23, 713–722CrossrefGoogle Scholar

  • Gill I., Valivety R. 1997. Polyunsaturated fatty acids, Part 1: Occurrence, biological activities and applications. Trends In Biotechnology, 15, 401–409CrossrefPubMedGoogle Scholar

  • Gratraud P., Huws E., Falkard B., Adjalley S., Fidock D.A., Berry L., et al. 2009. Oleic acid biosynthesis in Plasmodium falciparum: characterization of the stearoyl-CoA desaturase and investigation as a potential therapeutic target. PLoS One, 9, e6889Web of ScienceGoogle Scholar

  • Guler J.L., Kriegova E., Smith T.K., Lukes J., Englund P.T. 2008. Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei. Molecular Microbiology, 67, 1125–42Web of ScienceCrossrefPubMedGoogle Scholar

  • Hao P, Alaraj I.Q., Dulayymi J., Baird M.S., Liu J., Liu Q. 2016. Sterculic acid and its analogues are potent inhibitors of Toxoplasma gondii. Korean Journal of Parasitology, 54, 139–45Web of ScienceCrossrefGoogle Scholar

  • Huang M.Z., Li J., Guan L., Li D.Q., Nie X.M., Gui R., Chen X. 2015. Therapeutic effects of acetylspiramycin and garlicin on cryptosporidiosis among drug users. International Journal for Parasitology: Drugs and Drug Resistance, 5, 185–90PubMedWeb of ScienceGoogle Scholar

  • Jones S.M., Urch J.E., Kaiser M., Brun R., Harwood J.L., Berry C., Gilbert I.H. 2005. Analogues of thiolactomycin as potential antimalarial agents. Journal of Medicinal Chemistry 48, 5932–41PubMedCrossrefGoogle Scholar

  • Kapoor R., Huang Y.S. 2006. Gamma linolenic acid: an antiinflammatory omega-6 fatty acid. Current Opinion In Lipidology, 7, 531–535Google Scholar

  • Kenny F.S., Pinder S., Ellis I.O., Gee J.M., Nicholson R.I., Bryce R., Robertson J.F.R. 2000. Gamma linolenic acid with tamoxifen as primary therapy in breast cancer. International Journal of Cancer, 85, 643–648CrossrefPubMedGoogle Scholar

  • Kim D.H., Yoo T.H., Lee S.H., Kang H.Y., Nam B.Y., Kwak S.J., et al. 2012. Gamma linolenic acid exerts anti-inflammatory and anti-fibrotic effects in diabetic nephropathy. Yonsei Medical Journal, 53, 1165–1175CrossrefPubMedWeb of ScienceGoogle Scholar

  • Langhorne J., Duffy P.E. 2016. Expanding the antimalarial toolkit: Targeting host-parasite interactions. Journal of Experimental Medicine, 213, 143–53. CrossrefWeb of ScienceGoogle Scholar

  • Laho T., Váradyová Z., Mihaliková K., Kišidayová S., Adamechová Z., Certík M., Jalč D. 2011. Effects of prefermented cereal-derived substrates (ground barley and rye bran) enriched with fungal γ-linolenic acid on rumen fermentation parameters and lipid metabolism in vitro. Journal of Applied Microbiology,111, 537–46PubMedWeb of ScienceCrossrefGoogle Scholar

  • Lee S.H., Stephens J.L., Paul K.S., Englund P.T. 2006. Fatty acid synthesis by elongases in trypanosomes. Cell, 126, 691–699CrossrefPubMedGoogle Scholar

  • Lu H., Zhu Y. 2013. The thermostability of two kinds of recombinant Δ6-fatty acid desaturase with different N-terminal sequence lengths in low temperature. Applied Biochemistry & Biotechnology, 171, 165–172CrossrefWeb of ScienceGoogle Scholar

  • Martins-Duarte E.S., Dubar F., Lawton P., Silva C.F., Soeiro M.N., Souza W.B.C., Vommaro R.C. 2015. Ciprofloxacin derivatives affect parasite cell division and increase the survival of mice infected with Toxoplasma gondii. Plos One, 10, e0125705. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Mwangi V.I., Mumo R.M., Kiboi D.M., Omar S.A., Ng’ang’a Z.W., Ozwara H.S. 2016. Methylene blue inhibits lumefantrine-resistant Plasmodium berghei. Journal of Infection in Developing Countries, 10, 635–42CrossrefWeb of SciencePubMedGoogle Scholar

  • Mellors A., Samad A. 1989. The acquisition of lipids by African trypanosomes. Parasitology Today, 5, 239–44CrossrefGoogle Scholar

  • Ntambi J.M., Miyazaki M. 2004. Regulation of stearoyl-CoA desaturases and role in metabolism. Progress in Lipid Research, 43, 91–104CrossrefPubMedGoogle Scholar

  • Ramakrishnan S., Docampo M.D., Macrae J.I., Pujol F.M., Brooks C.F., van Dooren G.G., et al. 2012. Apicoplast and endoplasmic reticulum cooperate in fatty acid biosynthesis in apicomplexan parasite Toxoplasma gondii. Journal of Biological Chemistry, 287, 4957–71CrossrefWeb of ScienceGoogle Scholar

  • Ramakrishnan S, Serricchio M, Striepen B, Bütikofer P. 2013. Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. Progress in Lipid Research, 52, 488–512. CrossrefWeb of SciencePubMedGoogle Scholar

  • Sharp P.M., Li W.H. 1987. The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 15, 1281–95PubMedCrossrefGoogle Scholar

  • Vigh L., Maresca B., Harwood J.L. 1998. Does the membrane’s physical state control the expression of heat shock and other genes? Trends in Biochemical Sciences, 23, 369–74PubMedCrossrefGoogle Scholar

  • Wright F. 1990. The effective number of codons’ used in a gene.Gene, 87:23–9CrossrefGoogle Scholar

About the article

Received: 2016-11-11

Revised: 2017-08-21

Accepted: 2017-10-09

Published Online: 2018-01-17

Published in Print: 2018-03-26


Citation Information: Acta Parasitologica, Volume 63, Issue 1, Pages 48–54, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0006.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in