Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

More options …
Volume 63, Issue 1


Characterization of phosphate transporter(s) and understanding their role in Leishmania donovani parasite

K.J. Sindhu
  • Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amit Kumar Kureel
  • Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sheetal Saini
  • Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Smita Kumari
  • Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pankaj Verma
  • Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ambak Kumar Rai
  • Corresponding author
  • Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-17 | DOI: https://doi.org/10.1515/ap-2018-0009


Inorganic phosphate (Pi) is shown to be involved in excretion of methylglyoxal (MG) in the promastigote form of Leishmania donovani parasite. Absence of Pi leads to its accumulation inside the parasite. Accumulation of MG is toxic to the parasite and utilizes glyoxylase as well as excretory pathways for its detoxification. In addition, Pi is also reported to regulate activities of ectoenzymes and energy metabolism (glucose to pyruvate) etc. Thus, it is known to cumulatively affect the growth of Leishmania parasite. Hence the transporters, which allow the movement of Pi across the membrane, can prove to be a crucial drug target. Therefore, we characterized two phosphate transporters in Leishmania (i) H+ dependent myo-inositol transporter (LdPHO84), and (ii) Na+ dependent transporter (LdPHO89), based on similar studies done previously on other lower organisms and trypanosomatids. We tried to understand the secondary structure of these two proteins and confirm modulation in their expression with the change in Pi concentration outside. Moreover, their modes of action were also measured in the presence of specific inhibitors (LiF, CCCP). Further analysis on the physiological role of these transporters in various stages of the parasite life cycle needs to be entrenched.

Keywords: Leishmania; inorganic phosphate; Pi transporters; methylglyoxal; drug resistance

Supplementary References

  • Bernsel A., Viklund H., Falk J., Lindahl E., von Heijne G., Elofsson A. 2008. Prediction of membrane-protein topology from first principles. . Proceedings of the National Academy of Sciences of the United States of America, 105, 7177-7181. CrossrefPubMedGoogle Scholar

  • Hessa T., Meindl-Beinker N.M., Bernsel A., Kim H., Sato Y., Lerch-Bader M., Nilsson I., White S.H., von Heijne G. 2007. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature, 450, 1026–1030. CrossrefPubMedGoogle Scholar

  • Käll L., Krogh A., Sonnhammer E.L. 2005. An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics, 21, 251–257CrossrefGoogle Scholar

  • Reynolds S.M., K.L., Riffle M.E, Bilmes J.A., Noble W.S. 2008. Transmembrane topology and signal peptide prediction using dynamic bayesian networks. PLoS Computer Biology, 4, e1000213. https://doi.org/10.1371/journal.pcbi.1000213Crossref

  • Viklund H., Elofsson A. 2008. OCTOPUS: method that improves topology prediction for transmembrane proteins by using twotrack ANN-based preference scores and an improved topological grammar. Bioinformatics, 24, 1662–1668CrossrefGoogle Scholar

  • Viklund H., Bernsel A., Skwark M., Elofsson A. 2008. SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics, 24, 2928–2929CrossrefPubMedGoogle Scholar


  • Arnold K., Bordoli L., Kopp J., Schwede T. 2006. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22, 195–201. CrossrefPubMedGoogle Scholar

  • Benkert P., Tosatto S.C., Schomburg D. 2008. QMEAN: A comprehensive scoring function for model quality assessment. Proteins, 71, 261–277. CrossrefPubMedGoogle Scholar

  • Bernsel A., Viklund H., Hennerdal A., Elofsson A. 2009. TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Research, 37, W465–468. CrossrefPubMedGoogle Scholar

  • Boutet E., Lieberherr D., Tognolli M., Schneider M., Bansal P., Bridge A.J. et al. 2016. UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt KnowledgeBase: How to Use the Entry View. Methods in Molecular Biology, 1374, 23–54. CrossrefGoogle Scholar

  • Burns D.J., Beever R.E. 1977. Kinetic characterization of the two phosphate uptake systems in the fungus Neurospora crassa. Journal of Bacteriology, 132, 511–519PubMedGoogle Scholar

  • Callens M., Kuntz D.A., Opperdoes F.R. 1991. Characterization of pyruvate kinase of Trypanosoma brucei and its role in the regulation of carbohydrate metabolism. Molecular and Biochemical Parasitology, 47, 19–29CrossrefPubMedGoogle Scholar

  • Coombs G.H., Craft J.A., Hart D.T. 1982. A comparative study of Leishmania mexicana amastigotes and promastigotes. Enzyme activities and subcellular locations. Molecular and Biochemical Parasitology, 5, 199–211CrossrefPubMedGoogle Scholar

  • Desjeux P. 2001. The increase in risk factors for leishmaniasis worldwide. Transactions of the Royal Society of Tropical Medicine and Hygiene, 95, 239–243PubMedCrossrefGoogle Scholar

  • Desjeux P. 2004. Leishmaniasis: current situation and new perspectives. Comparative Immunology, Microbiology & Infectious Diseases, 27, 305–318. CrossrefGoogle Scholar

  • Dick C.F., Dos-Santos A.L., Fonseca-de-Souza A.L., Rocha-Ferreira J., Meyer-Fernandes J.R. 2010. Trypanosoma rangeli: differential expression of ecto-phosphatase activities in response to inorganic phosphate starvation. Experimental Parasitology, 124, 386–393. CrossrefPubMedGoogle Scholar

  • Dick C.F., Dos-Santos A.L., Majerowicz D., Gondim K.C., Caruso-Neves C., Silva I.V., et al. 2012. Na+-dependent and Na+-independent mechanisms for inorganic phosphate uptake in Trypanosoma rangeli. Biochimica et Biophysica Acta, 1820, 1001–1008. CrossrefPubMedGoogle Scholar

  • Dick C.F., Dos-Santos A.L., Meyer-Fernandes J.R. 2014. Inorganic phosphate uptake in unicellular eukaryotes. Biochimica et Biophysica Acta, 1840, 2123–2127. CrossrefPubMedGoogle Scholar

  • Docampo R., Ulrich P., Moreno S. N. 2010. Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philosophical Transactions of the Royal Society Biological Sciences, 365, 775–784. CrossrefGoogle Scholar

  • Drew M.E., Langford C.K., Klamo E.M., Russell D.G., Kavanaugh M.P., Landfear S.M. 1995. Functional Expression of a myo-Inositol/H1 Symporter from Leishmania donovani. Molecular and Cellular Biology, 15, 5508–5515CrossrefGoogle Scholar

  • Dujardin J.C. 2006. Risk factors in the spread of leishmaniases: towards integrated monitoring? Trends in Parasitology, 22, 4–6. CrossrefPubMedGoogle Scholar

  • Dunker A.K., Lawson J.D., Brown C.J., Williams R.M., Romero P., Oh J.S., et al. 2001. Intrinsically disordered protein. Journal of Molecular Graphics and Modelling, 19, 26–59. CrossrefGoogle Scholar

  • Dunker A.K., Silman I., Uversky V.N., Sussman J.L. 2008. Function and structure of inherently disordered proteins. Current Opinion in Structural Biology, 18, 756–764. CrossrefPubMedGoogle Scholar

  • Dyson H.J., Wright P.E. 2005. Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 6, 197–208. CrossrefPubMedGoogle Scholar

  • Ernest I., Callens M., Opperdoes F.R., Michels P.A. 1994. Pyruvate kinase of Leishmania mexicana mexicana. Cloning and analysis of the gene, overexpression in Escherichia coli and characterization of the enzyme. Molecular and Biochemical Parasitology, 64, 43–54CrossrefPubMedGoogle Scholar

  • Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783–791. CrossrefPubMedGoogle Scholar

  • Fiser A., Sali A. 2003. ModLoop: automated modeling of loops in protein structures. Bioinformatics, 19, 2500–2501CrossrefPubMedGoogle Scholar

  • Fiser A., Do R.K., Sali A. 2000. Modeling of loops in protein structures. Protein Science, 9, 1753–1773. CrossrefGoogle Scholar

  • Guex N., Peitsch M.C., Schwede T. 2009. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. . Electrophoresis, 30, 162–173. CrossrefGoogle Scholar

  • Kumar S., Stecher G., Tamura K. 2015. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870–1874. CrossrefGoogle Scholar

  • Lamarche M.G., Wanner B.L., Crepin S., Harel J. 2008. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiology Reviews, 32, 461–473. CrossrefPubMedGoogle Scholar

  • Lanzetta P.A., Alvarez L.J., Reinach P., Candia O.A. 1979. An improved assay for nanomole amounts of inorganic phosphate. Analytical Biochemistry, 100, 95–97CrossrefPubMedGoogle Scholar

  • Livak K.J., Schmittgen T.D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 25, 402–408. CrossrefGoogle Scholar

  • Lom J. 1976. Biology of the trypanosomes and trypanoplasms of fish. In: (Eds W. H. R. Lumsden, and D. A. Evans) Biology of the Kinetoplastida. Academic Press, London/New York/San Francisco. 269–337Google Scholar

  • Lovell S.C., Davis I.W., Arendall W.B., de Bakker P.I., Word J.M., Prisant M.G., et al. 2003. Structure validation by C-alpha geometry: phi, psi and C-beta deviation. Proteins, 50, 437–450. CrossrefGoogle Scholar

  • Lowendorf H.S., Slayman C.L., Slayman C.W. 1974. Phosphate transport in Neurospora. Kinetic characterization of a constitutive, low-affinity transport system. Biochimica et Biophysica Acta, 373, 369–382PubMedGoogle Scholar

  • Margarane M., UniProt Consorsium. 2011. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford), 2011, bar009. CrossrefPubMedGoogle Scholar

  • Martinez P., Persson B.L. 1998. Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 258, 628–638CrossrefGoogle Scholar

  • Mason P.W., Carbone D.P., Cushman R.A., Waggoner A.S. 1981. The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis. Journal of Biological Chemistry, 256, 1861–1866.Google Scholar

  • McGwire B.S., Satoskar A.R. 2014. Leishmaniasis: clinical syndromes and treatment. QJM, 107, 7–14. CrossrefPubMedGoogle Scholar

  • Michels P., Bringaud F., Herman M., Hannaert V. 2006. Metabolic functions of glycosomes in trypanosomatids. Biochimica et Biophysica ActaMolecular Cell Research, 1763, 1463–1477. CrossrefGoogle Scholar

  • Oshima Y. 1997. The phosphatase system in Saccharomyces cerevisiae. Genes & Genetic Systems, 72, 323–334PubMedCrossrefGoogle Scholar

  • Pabon M.A., Caceres A.J., Gualdron M., Quinones W., Avilan L., Concepcion J.L. 2007. Purification and characterization of hexokinase from Leishmania mexicana. Parasitology Research, 100, 803–810. CrossrefPubMedGoogle Scholar

  • Persson B.L., Berhe A., Fristedt U., Martinez P., Pattison J., Petersson J., Weinander R. 1998. Phosphate permeases of Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1365, 23–30. CrossrefPubMedGoogle Scholar

  • Persson B.L., Petersson J., Fristedt U., Weinander R., Berhe A., Pattison J. 1999. Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochimica et Biophysica Acta, 1422, 255–272PubMedCrossrefGoogle Scholar

  • Pillai A.D., Addo R., Sharma P., Nguitragool W., Srinivasan P., Desai S. A. 2013. Malaria parasites tolerate a broad range of ionic environments and do not require host cation remodeling. Molecular Microbiology, 88, 20–34. CrossrefGoogle Scholar

  • Rai A.K., Kumar P., Saini S., Thakur C.P., Seth T., Marta D.K. 2016. Increased level of soluble adenosine deaminase in bone marrow of visceral leishmaniasis patients: an inverse relation with parasite load. Acta Parasitologica, 61, 645–649. CrossrefPubMedGoogle Scholar

  • Rizzo S.C., Eckel R.E. 1966. Control of glycolysis in human erythrocytes by inorganic phosphate and sulfate. American Journal of Physiology, 211, 429–436Google Scholar

  • Rosenberg H., Gerdes R.G., Chegwidden K. 1977. Two systems for the uptake of phosphate in Escherichia coli. Journal of Bacteriology, 131, 505–511PubMedGoogle Scholar

  • Roy A., Kucukural A., Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5, 725–738. CrossrefPubMedGoogle Scholar

  • Russo-Abrahao T., Alves-Bezerra M., Majerowicz D., Freitas-Mesquita A. L., Dick C. F., Gondim K. C., Meyer-Fernandes J. R. 2013. Transport of inorganic phosphate in Leishmania infantum and compensatory regulation at low inorganic phosphate concentration. Biochimica et Biophysica Acta, 1830, 2683–2689CrossrefGoogle Scholar

  • Russo-Abrahao T., Koeller C.M., Steinmann M.E., Silva-Rito S., Marins-Lucena T., Alves-Bezerra M., et al. 2017. H+ dependent inorganic phosphate uptake in Trypanosoma brucei is influenced by myo-inositol transporter. Journal of Bioenergetics and Biomembranes, 49, 183–194. CrossrefPubMedGoogle Scholar

  • Sacci J.B. Jr., Campbell T. A., Gottlieb M. 1990. Leishmania donovani: regulated changes in the level of expression of the surface 3’-nucleotidase/nuclease. Experimental Parasitology, 71, 158–168CrossrefPubMedGoogle Scholar

  • Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425Google Scholar

  • Saliba K.J., Martin R.E., Broer A., Henry R.I., McCarthy C.S., Downie M.J., Allen R.J., Mullin K. ., McFadden G.I., Broer S., Kirk K. 2006. Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite. Nature, 443, 582–585. CrossrefPubMedGoogle Scholar

  • Samira A., Philippe L. 2017. In vitro effects of purine and pyrimidine analogues on Leishmania donovani and Leishmania infantum promastigotes and intracellular amastigotes. Acta Parasitologica, 62, 582–588. CrossrefPubMedGoogle Scholar

  • Schmittgen T. D., Livak K. J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108CrossrefGoogle Scholar

  • Tasaki Y., Kamiya Y., Azwan A., Hara T., Joh T. 2002. Gene expression during Pi deficiency in Pholiota nameko: accumulation of mRNAs for two transporters. Bioscience, Biotechnology, and Biochemistry, 66, 790–800. CrossrefPubMedGoogle Scholar

  • Tiwari P., Verma P., Kureel A. K., Saini S., Rai A. K. 2016. Pi inhibits intracellular accumulation of methylglyoxal in promastigote form of L. donovani. Molecular and Biochemical Parasitology, 207, 89–95. CrossrefPubMedGoogle Scholar

  • Tsirigos K. D., Peters C., Shu N., Kall L., Elofsson A. 2015. The TOPCONS web server for combined membrane protein topology and signal peptide prediction. Nucleic Acids Research, 43, W401–W407. CrossrefGoogle Scholar

  • Tyler P., Sudhandiran G., Hobbs S. B., Seyfang A. 2004. Substrate specificity of the Leishmania donovani myo-inositol transporter: critical role of inositol C-2, C-3 and C-5 hydroxyl groups. Molecular & Biochemical Parasitology 135, 133–141. CrossrefGoogle Scholar

  • Versaw W. K., Metzenberg R. L. 1995. Repressible cation-phosphate symporters in Neurospora crassa. Proceedings of the National Academy of Sciences, 92, 3884–3887CrossrefGoogle Scholar

  • Vieira D. P., Paletta-Silva R., Saraiva E. M., Lopes A. H., Meyer-Fernandes J. R. 2011. Leishmania chagasi: an ecto-3’-nucleotidase activity modulated by inorganic phosphate and its possible involvement in parasite-macrophage interaction. Experimental Parasitology, 127, 702–707. CrossrefPubMedGoogle Scholar

  • Vieira B.R., Gomes-Vieira A.L., Carvalho-Kelly L.F., Russo A.T., Meyer Frenandes J.R. 2017. The biochemcial chacracterization of two phosphate transport system in Phytomonas serpens. Experimental Parasitology, 173, 1–8. CrossrefGoogle Scholar

  • Wallner B., Elofsson A. 2003. Can correct protein models be identified? Protein Science, 12, 1073–1086. CrossrefGoogle Scholar

  • Ward J. J., Sodhi J. S., McGuffin L. J., Buxton B. F., Jones D. T. 2004. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. Journal of Molecular Biology, 337, 635–645. CrossrefPubMedGoogle Scholar

  • Ward J. J., McGuffin L. J., Bryson K., Buxton B. F., Jones D. T. 2004. The DISOPRED server for the prediction of protein disorder. Bioinformatics, 20, 2138–2139. CrossrefPubMedGoogle Scholar

  • Wass M. N., Kelley L. A., Sternberg M. J. 2010. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Research, 38, W476–473. CrossrefPubMedGoogle Scholar

  • WHO 2015. Kala-Azar elimination programme: report of a WHO consultation of partners, Geneva, Switzerland, 10–11 February 2015Google Scholar

  • Willsky G. R., Bennett R. L., Malamy M. H. 1973. Inorganic Phosphate Transport in Escherichia coli: Involvement of Two Genes Which Play a Role in Alkaline Phosphatase Regulation. Journal of Bacteriology 113, 529–539PubMedGoogle Scholar

  • Willsky G. R., Malamy M. H. 1980. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. Journal of Bacteriology, 144, 356–365PubMedGoogle Scholar

  • Yang J., Zhang Y. 2015. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Research, 43, 174–181. CrossrefGoogle Scholar

  • Zhang K., Hsu F. F., Scott D. A., Docampo R., Turk J., Beverley S. M. 2005. Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Molecular Microbiology, 55, 1566–1578. CrossrefPubMedGoogle Scholar

  • Zhang Y. 2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40. CrossrefPubMedGoogle Scholar

  • Zuckerkandl E., Pauling L. 1965. Evolutionary divergence and convergence in proteins. Evolving Genes and Proteins, 97–166. CrossrefGoogle Scholar

About the article

Received: 2017-06-16

Revised: 2017-10-07

Accepted: 2017-10-12

Published Online: 2018-01-17

Published in Print: 2018-03-26

Conflicts of interest: The authors declare no conflict of interest.

Citation Information: Acta Parasitologica, Volume 63, Issue 1, Pages 75–88, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0009.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in