Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 63, Issue 1

Issues

Metazoan parasite fauna of migrating common garfish, Belone belone (L.), in the Baltic Sea

Patrick Unger
  • Corresponding author
  • Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kilian Neubert
  • Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Harry W. Palm
  • Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-17 | DOI: https://doi.org/10.1515/ap-2018-0011

Abstract

A total of 35 common garfish, Belone belone (Linnaeus, 1761), were studied for metazoan parasites on their spawning grounds in the western Baltic Sea. Nine parasite species were found, and six new locality records could be established for German coastal waters (Axine belones, Monogenea; Proteocephalus sp., Cestoda; Anisakis simplex (s.s.), Contracaecum rudolphii A and Hysterothylacium aduncum, Nematoda; Echinorhynchus gadi, Acanthocephala). For the first time, the marine ectoparasite A. belones was recorded from the gills of garfish inside the Baltic Sea, indicating its ability to survive the spawning migration as well as the brackish water conditions at its reproduction grounds. This is alike the endohelminth A. simplex (s.s.), that was identified by molecular analyses of the internal transcribed spacer (ITS-1, 5.8S, ITS-2) region. Almost all isolated metazoans were parasites commonly recorded from the northeast Atlantic Ocean and the North Sea. The lower number of typical generalist Baltic Sea parasites indicates the rapid migration of common garfish onto the spawning grounds, reducing the access and uptake of these species.

Keywords: Baltic Sea; garfish; Belone belone; metazoan parasites; spawning migration

References

  • Andersen K., des Clers S., Jensen T. 1995. Aspects of the sealworm Pseudoterranova decipiens life-cycle and seal-fisheries interactions along the Norwegian coast. Developments in Marine Biology, 4, 557–564CrossrefGoogle Scholar

  • Bartz R.P., Jacobsen H.P. 1969. Die digenen Darmtrematoden der Wismarer Bucht. M.Sc. thesis, Pädagogische Hochschule Güstrow, pp. 109 (In German)Google Scholar

  • Berger W.H., Parker F.L. 1970. Diversity of planktonic foraminifera in deep-sea sediments. Science, 168, 3937, 1345–1347PubMedCrossrefGoogle Scholar

  • Bush O., Lafferty A.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets ecology on his own terms. Margolis et al. revisited. Journal of Parasitology, 83, 575–583. CrossrefGoogle Scholar

  • Cribb T.H., Bray R.A. 2010. Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. Systematic Parasitology, 76, 1–7. CrossrefPubMedGoogle Scholar

  • Dalgaard P., Madsen H.L., Samieian N., Emborg J. 2006. Biogenic amine formation and microbial spoilage in chilled garfish (Belone belone belone) – effect of modified atmosphere packaging and previous frozen storage. Journal of Applied Microbiology,101, 80–95. CrossrefPubMedGoogle Scholar

  • Dorman J.A. 1986. Contributions to the biology of the garfish Belone belone and Belone svetovidovi. Ph.D. thesis, University of Dublin, IrelandGoogle Scholar

  • Dorman J.A. 1989. Some aspects of the biology of the garfish Belone belone (L.) from Southern Ireland. Journal of Fish Biology, 35, 621–629CrossrefGoogle Scholar

  • Dorman J.A. 1991. Investigations into the biology of the garfish, Belone belone (L.), in Swedish waters. Journal of Fish Biology,39, 59–69CrossrefGoogle Scholar

  • Dziekońska-Rynko J., Rokicki J. 2007. Life cycle of the nematode Contracaecum rudolphii Hartwig, 1964 (sensu lato) from northern Poland under laboratory conditions. Helminthologia, 44, 3, 95–102. CrossrefGoogle Scholar

  • Engelbrecht H. 1958. Untersuchungen über den Parasitenbefall der Nutzfische im Greifswalder Bodden und Kleinem Haff. Zeitschrift für Fischerei, 7, 481–511. (In German)Google Scholar

  • Fagerholm H.P. 1976. Fish nematodes from brackish and freshwater fishes in Finland. Norwegian Journal of Zoology, 24, 4, 466Google Scholar

  • FAO 2016. Food and Agriculture Organization of the United Nations, Fishery Statistical Collections, Global Aquaculture Production, http://www.fao.org. Cited 28 October 2016

  • Fischer E. 1955. Die parasitischen Würmer der wirtschaftlich wichtigsten Ostseefische. PhD-Thesis, Humboldt-University Berlin, Germany. (In German)Google Scholar

  • Fulton T.W. 1904. The rate of growth of fishes. Twenty-second Annual Report, Part III. Fisheries Board of Scotland, Edinburgh, 141–241Google Scholar

  • Gibson D.I., Jones A., Bray R.A. 2002. Keys to the Trematoda, vol. 1. London: CAB International and Natural History Museum, pp. 521Google Scholar

  • Grabda J. 1971. Catalogue of Parasitic Fauna in Poland. II, Parasites of Cyclostomates and Fishes. PWN Warszawa-WrodawGoogle Scholar

  • Grabda J. 1981. Parasitic fauna of garfish Belone belone (L.) from the Pomeranian Bay (southern Baltic) and its origin. Acta ichthyologica et piscatoria, 9, 1, 75–85Google Scholar

  • Holmes J.C., Price P.W. 1986. Communities of parasites. In: (Eds. Anderson D.J., Kikkawa J.) Community ecology: Pattern and process. Blackwell Scientific Publications, Oxford, U.K., 187–213Google Scholar

  • Holmes J.C. 1991. Spatial scale and important species in the analysis of communities of parasites. Second International School: parasite–host environment, Sofia, 28, pp. 14Google Scholar

  • Jacobsen P., Bartz P., Szuks H. 1971. Die Trematodenfauna des Darmkanals der Fische des Salzhaffs (westliche Ostsee). Wissenschaftliche Zeitschrift der Pädagogischen Hochschule Güstrow, 49–51. (In German)Google Scholar

  • Kanarek G. 2011. Population biology of Contracaecum rudolphii sensu lato (Nematoda) in the great cormorant (Phalacrocorax carbo) from northeastern Poland. The Journal of parasitology, 97, 185–191. CrossrefPubMedGoogle Scholar

  • Karlsbakk E., Køie M. 2012. The marine myxosporean Sigmomyxa sphaerica (Thélohan, 1895) gen. n., comb. n.(syn. Myxidium sphaericum) from garfish (Belone belone (L.)) uses the polychaete Nereis pelagica L. as invertebrate host. Parasitology Research, 110, 1, 211–218. CrossrefGoogle Scholar

  • Klimpel S., Palm H.W. 2011. Anisakid nematode (Ascaridoidea) life cycles and distribution: Increasing zoonotic potential in the time of climate change? Parasitology Research Monographs 2, Springer-Verlag, Heidelberg, Germany, 1–22. CrossrefGoogle Scholar

  • Køie M. 1993. Aspects of the life cycle and morphology of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda, Ascaridoidea, Anisakidae). Canadian Journal of Zoology, 71, 7, 1289–1296CrossrefGoogle Scholar

  • Kompowski A. 1965. The investigations on the garfish (Belone belone L.) from Puck Minchin, Bay. Prace Morskiego Instytutu Rybackiego, 13Google Scholar

  • Kuhn T., García-Màrquez J., Klimpel S. 2011. Adaptive radiation within marine anisakid nematodes: a zoogeographical modeling of cosmopolitan, zoonotic parasites. PLoS One, 6, 12, e28642. CrossrefGoogle Scholar

  • Levsen A., Lunestad B.T. 2010. Anisakis simplex third stage larvae in Norwegian spring spawning herring (Clupea harengus L.), with emphasis on larval distribution in the flesh. Veterinary Parasitology, 171, 3, 247–253. CrossrefPubMedGoogle Scholar

  • Llewellyn J., Green J.E., Kearn G.C. 1984. A checklist of Monogenean (Platyhelminth) parasites of Plymouth hosts. Journal of the Marine Biological Association of the United Kingdom, 64, 881–887CrossrefGoogle Scholar

  • Lorenz L. 1878. Ueber die Organisation der Gattungen Axine und Microcotyle. – Arbeiten aus dem Zoologischen Institute, Wien, 1, 405–436. (In German)Google Scholar

  • Lüthen K. 1988. Zur Parasitierung der Flunder, Platichthys flesus (L.), an der Ostseeküste der DDR. Wissenschaftliche Zeitschrift der Pädagogischen Hochschule Güstrow, 1, 49–62. (In German)Google Scholar

  • Moravec F. 2004. Metazoan Parasites of Salmonid Fishes in Europe. Academia, Prague, pp. 512Google Scholar

  • Möller H. 1975. Der Einfluß von Temperatur und Salzgehalt auf Entwicklung und Verbreitung von Fischparasiten, PhD-Thesis, University Kiel, 108 pp. (In German)Google Scholar

  • Odhner T. 1905. Die Trematoden des arktischen Gebietes. Fauna Arctica, 4, 291–372. (In German)Google Scholar

  • Özer A., YurakhnoV. 2013. Parasite fauna of garfish Belone belone collected from Sinop coasts of the Black Sea, Turkey. Bulletin of the European Association of Fish Pathologists, 33, 171–180Google Scholar

  • Palm H.W., Klimpel S., Bucher C. 1999. Checklist of metazoan fish parasites of German coastal waters. Berichte aus dem Institut für Meereskunde an der Christian-Albrecht Universität, Kiel, 307, pp. 148Google Scholar

  • Palm H.W., Bray R.A. 2014. Marine Fish Parasitology in Hawaii.Westarp & Partner Digitaldruck, Hohenwarsleben, pp. 302Google Scholar

  • Pielou E.C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131–144CrossrefGoogle Scholar

  • Podolska M., Horbowy J., Wyszynski M. 2006. Discrimination of Baltic herring populations with respect to Anisakis simplex larvae infection. Journal of Fish Biology, 68, 1241–1256. CrossrefGoogle Scholar

  • Poulin R. 1997. Evolutionary ecology of parasites: from individuals to community. Chapman & Hall, London, pp. 360Google Scholar

  • Prost M. 1967. Comparison of some species of fishes from the Mediterranean, Adriatic and Baltic Seas. Acta Parasitologica polonica, XIV, 32Google Scholar

  • Radujković B.M., Šundić D. 2014. Parasitic Flatworms (Platyhelminthes: Monogenea, Digenea, Cestoda) of Fishes from the Adriatic Sea. Natura Montenegrina, 13, 7–280. CrossrefGoogle Scholar

  • Reimer L.W., Walter U. 1993. The parasitization of Gadus morhua in the southern Baltic Sea. Applied parasitology, 34, 3, 181–186PubMedGoogle Scholar

  • Riemann F. 1988. Nematoda. In: (Eds Higgins R.P., Thiel H.) Introduction to the study of meiofauna. Smithsonian Press, Washington, DC, 293–301Google Scholar

  • Roman-Chiriac E. 1960. Clasa Monogenoidea. Fauna Republicii Populare Romane, Platyhelminthes, 2, 1–149.Google Scholar

  • Rynkiewicz J. 1970. The Parasite Fauna of Garfish Belone belone (L.) from Puck Bay. Acta Ichthyologica et Piscatoria, 1, 103–106CrossrefGoogle Scholar

  • Scholz T. 1999. Life cycles of species of Proteocephalus, parasites of fishes in the Palearctic Region: a review. Journal of Helminthology, 73, 1, 1–19PubMedGoogle Scholar

  • Shannon C.E. 1948. A mathematical theory of communication. Bell System Technical Journal, 27, 379–423CrossrefGoogle Scholar

  • Shih H.H. 2004. Parasitic helminth fauna of the cutlass fish, Trichiurus lepturus L., and the differentiation of four anisakid nematode third-stage larvae by nuclear ribosomal DNA sequences. Parasitology Research, 93, 188–195. CrossrefPubMedGoogle Scholar

  • Simpson E.H. 1949. Measurement of diversity. Nature, 163, 688CrossrefGoogle Scholar

  • Szostakowska B., Myjak P., Wyszynski M., Pietkiewicz H., Rokicki J. 2005. Prevalence of Anisakin Nematodes in Fish from southern Baltic Sea. Polish Journal of Microbiology, 54, 41–45PubMedGoogle Scholar

  • Szostakowska B., Fagerholm H. P. 2007. Molecular identification of two strains of third-stage larvae of Contracaecum rudolphii sensu lato (Nematoda: Anisakidae) from fish in Poland. Journal of Parasitology, 93, 961–964CrossrefGoogle Scholar

  • Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725–2729. CrossrefPubMedGoogle Scholar

  • Unger P., Klimpel S., Lang T., Palm H.W. 2014. Metazoan parasites from herring (Clupea harengus L.) as biological indicators in the Baltic Sea. Acta Parasitologica, 59, 518–528. CrossrefPubMedGoogle Scholar

  • Unger P., Palm H.W. 2016. Parasitation of sea trout (Salmo trutta trutta L.) from the spawning ground and German coastal waters off Mecklenburg-Western Pomerania, Baltic Sea. Parasitology Research, 115, 1, 165–174. CrossrefPubMedGoogle Scholar

  • Unger P., Palm H. W. 2017. Parasite risk of maricultured rainbow trout (Oncorhynchus mykiss Walbaum, 1792) in the Western Baltic Sea, Germany. Aquaculture International, 25, 975–989. CrossrefGoogle Scholar

  • Van Beneden P.J.1858. Mémoire sur les vers intestinaux. - Supplement Comptes Rendus des Sciences de la Société de Biologie, Paris, 2, 1–376Google Scholar

  • Voigt H.R. 1981. A survey of the parasites from the Baltic Smelt, Osmerus Eperlanus. Proceedings of the 10th symposium of the Scandinavian Society for Parasitology. ABO Akademi Information, 16, 62–65Google Scholar

  • Wheeler A. 1969. The Fishes of the British Isles and North West Europe. East Lansing: Michigan State University Press, pp. 613Google Scholar

  • Zhu X.Q., Gasser R.B., Jacobs D.E., Hung G.C., Chilton N.B. 2000. Relationships among some ascaridoid nematodes based on ribosomal DNA sequence data. Parasitology Research, 86, 738–744. CrossrefPubMedGoogle Scholar

About the article

Received: 2017-03-02

Revised: 2017-06-09

Accepted: 2017-07-21

Published Online: 2018-01-17

Published in Print: 2018-03-26


Citation Information: Acta Parasitologica, Volume 63, Issue 1, Pages 99–105, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0011.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in