Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 63, Issue 1

Issues

Asymmetric peptidomimetics containing L-tartaric acid core inhibit the aspartyl peptidase activity and growth of Leishmania amazonensis promastigotes

André L.S. Santos
  • Corresponding author
  • Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
  • Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Filipe P. Matteoli
  • Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leandro S. Sangenito
  • Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta H. Branquinha
  • Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bruno A. Cotrim
  • Instituto Federal de Educação Ciência e Tecnologia do Rio de Janeiro, Campus Rio de Janeiro, Rio de Janeiro, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gabriel O. Resende
  • Instituto Federal de Educação Ciência e Tecnologia do Rio de Janeiro, Campus Rio de Janeiro, Rio de Janeiro, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-17 | DOI: https://doi.org/10.1515/ap-2018-0013

Abstract

Aspartyl-type peptidases are promising chemotherapeutic targets in protozoan parasites. In the present work, we identified an aspartyl peptidase activity from the soluble extract of Leishmania amazonensis promastigotes, which cleaved the fluorogenic peptide 7-methoxycoumarin-4-acetyl-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(DNP)-D-Arg-amide (cathepsin D substrate) under acidic pH conditions at 37°C, showing a KM of 0.58 μM and Vmax of 129.87 fluorescence arbitrary units/s mg protein. The leishmanial aspartyl peptidase activity was blocked by pepstatin A (IC50 = 6.8 μM) and diazo-acetyl-norleucinemetilester (IC50 = 10.2 μM), two classical aspartyl peptidase inhibitors. Subsequently, the effects of 6 asymmetric peptidomimetics, containing L-tartaric acid core, were tested on both aspartyl peptidase and growth of L. amazonensis promastigotes. The peptidomimetics named 88, 154 and 158 promoted a reduction of 50% on the leishmanial aspartyl peptidase activity at concentrations ranging from 40 to 85 μM, whereas the peptidomimetic 157 was by far the most effective, presenting IC50 of 0.04 μM. Furthermore, the peptidomimetics 157 and 154 reduced the parasite proliferation in a dose-dependent manner, displaying IC50 values of 33.7 and 44.5 μM, respectively. Collectively, the peptidomimetic 157 was the most efficient compound able to arrest both aspartyl peptidase activity and leishmanial proliferation, which raises excellent perspectives regarding its use against this human pathogenic protozoan.

Keywords: Leishmania amazonensis; peptidomimetics; L-tartaric acid; aspartyl peptidases; aspartyl peptidase inhibitors; anti-Leishmania action

References

  • Abrahim-Vieira B., da Costa E.C.B., de Azevedo P.H.R., Portela A.C., Dias L.R.S., Pinheiro S., et al. 2014. Novel isomannide-based peptide mimetics containing a tartaric acid backbone as serine protease inhibitors. Medicinal Chemistry Research, 23, 5305–5320. CrossrefWeb of ScienceGoogle Scholar

  • Alfonso Y., Monzote L. 2011. HIV protease inhibitors: effect on the opportunistic protozoan parasites. The Open Medicinal Chemistry Journal, 5, 40–50. CrossrefPubMedGoogle Scholar

  • Alves C.R., Corte-Real S., Bourguignon S.C., Chaves C.S., Saraiva E.M. 2005. Leishmania amazonensis: early proteinase activities during promastigote-amastigote differentiation in vitro, Experimental Parasitology, 109, 38–48. CrossrefPubMedGoogle Scholar

  • Barros J.C., da Silva J.F.M., Calazans A., Tanuri A., Brindeiro R.M., Williamson J.S., et al. 2006. Synthesis of pseudopeptides derived from (R, R)-tartaric acid as potential inhibitors of HIV-protease. Letters in Organic Chemistry, 3, 882–886CrossrefGoogle Scholar

  • Bastos I.M., Motta F.N., Grellier P., Santana J.M. 2013. Parasite prolyl oligopeptidases and the challenge of designing chemother-apeuticals for Chagas disease, leishmaniasis and African trypanosomiasis. Current Medicinal Chemistry, 20, 3103–3115. CrossrefPubMedGoogle Scholar

  • Bates P.A., Robertson C.D., Coombs G.H. 1994. Expression of cysteine proteinases by metacyclic promastigotes of Leishmania mexicana. Journal of Eukaryotic Microbiology, 41, 199–203. CrossrefGoogle Scholar

  • Branquinha M.H., Sangenito L.S., Sodré C.L., Kneipp L.F., d’ Avila-Levy C.M., Santos A.L.S. 2017. The widespread anti-protozoal action of HIV aspartic peptidase inhibitors: focus on Plasmodium spp., Leishmania spp. and Trypanosoma cruzi. Current Topics in Medicinal Chemistry, 17, 1303–1317. CrossrefWeb of SciencePubMedGoogle Scholar

  • Caffrey C.R., Lima A.P., Steverding D. 2011. Cysteine peptidases of kinetoplastid parasites, Advances in Experimental Medicine and Biology, 712, 84–99. CrossrefPubMedGoogle Scholar

  • Coates L., Erskine P.T., Mall S., Gill R., Wood S.P., Myles D.A., et al. 2006. X-Ray, neutron and NMR studies of the catalytic mechanism of aspartic proteinases. European Biophysics Journal, 35, 559–566. CrossrefGoogle Scholar

  • Dali B., Keita M., Megnassan E., Frecer V., Miertus S. 2012. Insight into selectivity of peptidomimetic inhibitors with modified statine core for plasmepsin II of Plasmodium falciparum over human cathepsin D. Chemical Biology and Drug Design, 79, 411–430. CrossrefWeb of ScienceGoogle Scholar

  • Dash C., Kulkarni A., Dunn B., Rao M. 2003. Aspartic peptidase inhibitors: implications in drug development. Critical Reviews in Biochemistry and Molecular Biology, 38, 89–119. CrossrefPubMedGoogle Scholar

  • Davies D.R. 1990. The structure and function of the aspartic proteinases. Annual Review of Biophysics and Biophysical Chemistry, 19, 189–215. CrossrefPubMedGoogle Scholar

  • Dominguez D.I., Hartmann D., De Strooper B. 2004. BACE1 and presenilin: two unusual aspartic proteases involved in Alzheimer’s disease. Neurodegenerative Disease, 1, 168–174. CrossrefGoogle Scholar

  • Eder J., Hommel U., Cumin F., Martoglio B., Gerhartz B. 2007. Aspartic proteases in drug discovery. Current Pharmaceutical Design. 13, 271–285. CrossrefWeb of SciencePubMedGoogle Scholar

  • Gazdik M., Jarman K.E., O’Neill M.T., Hodder A.N., Lowes K.N., Jousset Sabroux H., et al. 2016. Exploration of the P3 region of PEXEL peptidomimetics leads to a potent inhibitor of the Plasmodium protease, plasmepsin V. Bioorganic and Medicinal Chemistry, 24, 1993–2010. CrossrefGoogle Scholar

  • Gonzalez A.A., Prieto M.C. 2015. Renin and the (pro)renin receptor in the renal collecting duct: role in the pathogenesis of hypertension. Clinical and Experimental Pharmacology and Physiology, 42, 14–21. CrossrefWeb of ScienceGoogle Scholar

  • Hamada Y., Kiso Y. 2016. New directions for protease inhibitors directed drug discovery. Biopolymers, 106, 563–579. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Harris J.L., Backes B.J., Leonetti F., Mahrus S., Ellman J.A., Craik C.S. 2000. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proceedings of the National Academy of Sciences of the United States of America, 97, 7754–7759. CrossrefPubMedGoogle Scholar

  • Hemández-Chinea C., Maimone L., Campos Y., Mosca W., Romero P.J. 2017. Apparent isocitrate lyase activity in Leishmania amazonensis. Acta Parasitologica, 62, 701–707. CrossrefWeb of SciencePubMedGoogle Scholar

  • Horimoto Y., Dee D.R., Yada R.Y. 2009. Multifunctional aspartic peptidase prosegments. New Biotechnology, 25, 318–324. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Koehler J.W., Morales M.E., Shelby B.D., Brindley P.J. 2007. Aspartic protease activities of schistosomes cleave mammalian hemoglobins in a host-specific manner. Memórias do Instituto Oswaldo Cruz, 102, 83–85CrossrefGoogle Scholar

  • Lima A.K.C., Elias C.G.R., Souza J.E.O., Santos A.L.S., Dutra P.M.L. 2009. Dissimilar peptidase production by avirulent and virulent promastigotes of Leishmania braziliensis: inference on the parasite proliferation and interaction with macrophages. Parasitology, 136, 1179–1191. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Lowry O.H., Rosebrough N.J., Farr A.L., Randal R.J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 264–275Google Scholar

  • Majer F., Pavlícková L., Majer P., Hradilek M., Dolejsí E., Hrusková-Heidingsfeldová O., et al. 2006. Structure-based specificity mapping of secreted aspartic proteases of Candida parapsilosis, Candida albicans, and Candida tropicalis using peptidomimetic inhibitors and homology modeling. Biological Chemistry, 387, 1247–1254. CrossrefPubMedGoogle Scholar

  • Nielsen P.E. 2004. Pseudo-peptides in drug discovery. John Wiley and Sons, ISBN: 978-3-527, 30633-30636Google Scholar

  • Olivier M., Atayde V.D., Isnard A., Hassani K., Shio M.T. 2012. Leishmania virulence factors: focus on the metalloprotease GP63. Microbes and Infection, 14, 1377–1389. CrossrefWeb of SciencePubMedGoogle Scholar

  • Peçanha E.P., Figueiredo L.J., Brindeiro R.M., Tanuri A., Calazans A.R., Antunes O.A. 2003. Synthesis and anti-HIV activity of new C2 symmetric derivatives designed as HIV-1 protease inhibitors. Farmaco, 58, 149–157. CrossrefPubMedGoogle Scholar

  • Perteguer M.J., Gómez-Puertas P., Cañavate C., Dagger F., Gárate T., Valdivieso E. 2012. Ddi1-like protein from Leishmania major is an active aspartyl proteinase. Cell Stress Chaperones, 18, 171–181. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Pranjol M.Z., Gutowski N., Hannemann M., Whatmore J. 2015. The potential role of the proteases cathepsin D and cathepsin L in the progression and metastasis of epithelial ovarian cancer. Biomolecules, 5, 3260–3279. CrossrefWeb of SciencePubMedGoogle Scholar

  • Qidwai T. 2015. Hemoglobin Degrading proteases of Plasmodium falciparum as antimalarial drug targets. Current Drug Targets, 16, 1133–1141. CrossrefWeb of SciencePubMedGoogle Scholar

  • Qiu X., Liu Z.P. 2011. Recent developments of peptidomimetic HIV-1 protease inhibitors. Current Medicinal Chemistry, 18, 4513–4537. CrossrefWeb of SciencePubMedGoogle Scholar

  • Resende G.O., João F.C., da Silva F.C., Cotrim B.A., Antunes O.A.C., Aguiar L.C.S. 2007. Synthesis of asymmetric peptide mimetic compounds containing tartaric acid core. Potential inhibitors of HIV-1 protease. Letters in Organic Chemistry, 4, 146–150. CrossrefWeb of ScienceGoogle Scholar

  • Sádlová J., Volf P., Victoir K., Dujardin J., Votypka J. 2006. Virulent and attenuated lines of Leishmania major: DNA karyotypes and differences in metalloproteinase GP63. Folia Parasitologica, 53, 81–90. CrossrefPubMedGoogle Scholar

  • Sangenito L.S., Gonçalves D.S., Seabra S.H., d’Avila-Levy C.M., Santos A.L.S., Branquinha M.H. 2016. HIV aspartic peptidase inhibitors are effective drugs against the trypomastigote form of the human pathogen Trypanosoma cruzi. International Journal of Antimicrobial Agents, 48, 440–444. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Santos L.O., Marinho F.A., Altoé E.F., Vitório B.S., Alves C.R., Britto C., et al. 2009. HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis. PLoS ONE, 4, e4918. CrossrefWeb of SciencePubMedGoogle Scholar

  • Santos L.O., Garcia-Gomes A.S., Catanho M., Sodre C.L., Santos A.L.S., Branquinha M.H., et al. 2013a. Aspartic peptidases of human pathogenic trypanosomatids: perspectives and trends for chemotherapy. Current Medicinal Chemistry, 20, 3116–3333. CrossrefGoogle Scholar

  • Santos L.O., Vitório B.S., Branquinha M.H., Pedrozo C., Santos A.L.S., d’Avila-Levy C.M. 2013b. Nelfinavir, an HIV aspartyl peptidase inhibitor, is effective in inhibiting the multiplication and aspartyl peptidase activity of several Leishmania species, including strains obtained from HIV-positive patients. Journal of Antmicrobial Chemotherapy, 68, 348–353. CrossrefGoogle Scholar

  • Savoia D. 2015. Recent updates and perspectives on leishmaniasis. The Journal of Infection in Developing Countries, 9, 588–596. CrossrefWeb of ScienceGoogle Scholar

  • Silva N.C., Nery J.M., Dias A.L. 2014. Aspartic proteinases of Candida spp.: role in pathogenicity and antifungal resistance. Mycoses, 57, 1–11. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Sojka D., Hartmann D., Bartošová-Sojková P., Dvořák J. 2016. Parasite cathepsin D-like peptidases and their relevance as therapeutic targets. Trends in Parasitology, 32, 708–723. CrossrefWeb of SciencePubMedGoogle Scholar

  • Trudel N., Garg R., Messier N., Sundar S., Ouellette S.M., Tremblay M.J. 2008. Intracellular survival of Leishmania species that cause visceral leishmaniasis is significantly reduced by HIV-1 protease inhibitors. The Journal of Infectious Diseases, 198, 1292–1299. CrossrefPubMedGoogle Scholar

  • Valdivieso E., Dagger F., Rascón A. 2007. Leishmania mexicana: identification and characterization of an aspartic proteinase activity. Experimental Parasitology, 116, 77–82E. CrossrefGoogle Scholar

  • Valdivieso A., Rangel J., Moreno J.M., Saugar C., Cañavate J., Alvar F., et al. 2010. Effects of HIV aspartyl proteinase inhibitors on Leishmania sp., Experimental Parasitology, 126, 557–563. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Wensing A.M., Van Maarseveen N.M., Nijhuis M. 2010. Fifteen years of HIV protease inhibitors: raising the barrier to resistance. Antiviral Research, 85, 59–74. CrossrefWeb of SciencePubMedGoogle Scholar

About the article

Received: 2017-07-29

Revised: 2017-10-30

Accepted: 2017-11-10

Published Online: 2018-01-17

Published in Print: 2018-03-26


Funding: This work was supported by grants from Fundação Carlos Chagas Filho de Amparo á Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Conflict of interest: The authors have no conflicts of interest to declare.


Citation Information: Acta Parasitologica, Volume 63, Issue 1, Pages 114–124, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0013.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in