Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 63, Issue 1

Issues

Transcriptional analysis of immune-relevant genes in the mucus of Labeo rohita, experimentally infected with Argulus siamensis

Sonali Parida / Amruta Mohapatra / Banya Kar / Jyotirmaya Mohanty / Pramoda Kumar Sahoo
Published Online: 2018-01-17 | DOI: https://doi.org/10.1515/ap-2018-0014

Abstract

The knowledge of mucosa-associated molecular events that occur during infections is scarce despite the well-established importance of mucus in fish immunity. Using qRT-PCR, we analyzed the immune gene expression patterns in mucus of Labeo rohita experimentally infected with an ectoparasite Argulus siamensis. Mucus samples were collected at 0 h, 12 h, 24 h, 3 d, 7 d, 15 d, and 30 d post challenge of L. rohita with metanauplii of A. siamensis. All interleukins studied herein (IL 6, IL 15, and IL 1β) showed significant upregulation of expression levels in mucus of A. siamensis-infected fish compared to control samples. Further, the expression levels of molecules involved in pathogen recognition, toll like receptor 22, and pathogen presentation, β2 microglobulin, were found to be significantly upregulated in experimental samples until 7 d post challenge compared to control samples. The upregulated expression of lysozyme G at all time points post infection indicated the early activation of acute phase responses in mucus of infected L. rohita. Moreover, the expression levels of natural killer cell enhancing factor B were found to be higher in infected fish than they were in the control fish. The early upregulation of the immune genes observed herein reinforces the role of mucus as the first line of defense against pathogenic assault; furthermore, it expands our understanding of mucosal-immune responses to A. siamensis infection, which can aid development of immunological interventions.

Keywords: Argulus siamensis; immune-relevant genes; Labeo rohita; mucus

References

  • Alvarez-Pellitero P. 2008. Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects. Veterinary Immunology and Immunopathology, 126, 171–198. CrossrefPubMedGoogle Scholar

  • Aranishi F., Mano N. 2000. Response of skin cathepsins to infection of Edwardsiella tarda in Japanese flounder. Fisheries Science, 66, 169–170. CrossrefGoogle Scholar

  • Armitage R.J., Macduff B.M., Eisenman J., Paxton R., Grabstein K.H. 1995. IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. The Journal of Immunology, 154, 483–490Google Scholar

  • Brinchmann M.F. 2016. Immune relevant molecules identified in the skin mucus of fish using-omics technologies. Molecular BioSystems, 12, 2056–2063. CrossrefPubMedGoogle Scholar

  • Chen J., Wu H.Q., Niu H., Shi Y.H., Li M.Y. 2009. Increased liver protein and mRNA expression of natural killer cell-enhancing factor B (NKEF-B) in ayu (Plecoglossus altivelis) after Aeromonas hydrophila infection. Fish & Shellfish Immunology, 26, 567–571CrossrefPubMedGoogle Scholar

  • Cole A.M., Weis P., Diamond G. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. Journal of Biological Chemistry, 272, 12008–12013. CrossrefGoogle Scholar

  • Concha M.I., Molina S., Oyarzún C., Villanueva J., Amthauer, R. 2003. Local expression of apolipoprotein AI gene and a possible role for HDL in primary defence in the carp skin. Fish & Shellfish Immunology, 14, 259–273. CrossrefGoogle Scholar

  • Cooper M.A., Bush J.E., Fehniger T.A., VanDeusen J.B., Waite R.E., Liu Y., Aguila H.L., Caligiuri M.A. 2002. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood, 100, 3633–3638. CrossrefPubMedGoogle Scholar

  • Dalmo R.A., B⊘gwald J. 2008. β-glucans as conductors of immune symphonies. Fish & Shellfish Immunology, 25, 384–396. CrossrefPubMedGoogle Scholar

  • Dalmo R.A., Ingebrigtsen K., Bøgwald J. 1997. Non-specific defence mechanisms in fish, with particular reference to the reticuloendothelial system (RES). Journal of Fish Diseases, 20, 241–273. CrossrefGoogle Scholar

  • Das S., Mohapatra A., Kar B., Sahoo P.K. 2015. Molecular characterization of interleukin 15 mRNA from rohu, Labeo rohita (Hamilton): Its prominent role during parasitic infection as indicated from infection studies. Fish & Shellfish Immunology, 43, 25–35. CrossrefPubMedGoogle Scholar

  • DiSanto J.P. 1997. Cytokines: shared receptors, distinct functions. Current Biology, 7, R424–R426. CrossrefGoogle Scholar

  • Doherty T.M., Seder R.A., Sher A. 1996. Induction and regulation of IL-15 expression in murine macrophages. The Journal of Immunology, 156, 735–741Google Scholar

  • Esteban M.A. 2012. An overview of the immunological defenses in fish skin. ISRN Immunology. CrossrefGoogle Scholar

  • Fernandes J.M., Smith V.J. 2004. Partial purification of antibacterial proteinaceous factors from erythrocytes of Oncorhynchus mykiss. Fish & Shellfish Immunology, 16, 1–9. CrossrefPubMedGoogle Scholar

  • Forlenza M., Walker P.D., De Vries B.J., Bonga S.E.W., Wiegertjes G.F. 2008. Transcriptional analysis of the common carp (Cyprinus carpio L.) immune response to the fish louse Argulus japonicus Thiele (Crustacea: Branchiura). Fish & Shellfish Immunology, 25, 76–83. CrossrefPubMedGoogle Scholar

  • Gosselin J., TomoÏu A., Gallo R.C., Flamand L. 1999. Interleukin-15 as an activator of natural killer cell-mediated antiviral response. Blood, 94, 4210–4219PubMedGoogle Scholar

  • Guardiola F.A., Cuesta A., Arizcun M., Meseguer J., Esteban M.A., 2014. Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream (Sparus aurata). Fish & Shellfish Immunology, 36, 545–551. CrossrefPubMedGoogle Scholar

  • Hatten F., Fredriksen Å., Hordvik I., Endresen C. 2001. Presence of IgM in cutaneous mucus, but not in gut mucus of Atlantic salmon, Salmo salar. Serum IgM is rapidly degraded when added to gut mucus. Fish & Shellfish Immunology, 11, 257–268. CrossrefGoogle Scholar

  • Ingram G.A. 1980. Substances involved in the natural resistance of fish to infection-a review. Journal of Fish Biology, 16, 23–60. CrossrefGoogle Scholar

  • Itami I. 1993. Defense mechanism of Ayu skin mucus. Journal of the Shimonoseki University Fisheries, 42, 71Google Scholar

  • Jones S.R. 2001.The occurrence and mechanisms of innate immunity against parasites in fish. Developmental and Comparative Immunology, 25, 841–852CrossrefGoogle Scholar

  • Kar B., Mohapatra A., Mohanty J., Sahoo P.K. 2015a. Transcriptional changes in three immunoglobulin isotypes of rohu, Labeo rohita in response to Argulus siamensis infection. Fish & Shellfish Immunology, 47, 28–33. CrossrefGoogle Scholar

  • Kar B., Mohanty J., Hemaprasanth K.P., Sahoo P.K. 2015b. The immune response in rohu, Labeo rohita (Actinopterygii: Cyprinidae) to Argulus siamensis (Branchiura: Argulidae) infection: kinetics of immune gene expression and innate immune response. Aquaculture Research, 46, 1292–1308CrossrefGoogle Scholar

  • Kar B., Moussa C., Mohapatra A., Mohanty J., Jayasankar P., Sahoo P K. 2016. Variation in susceptibility pattern of fish to Argulus siamensis: Do immune response s of host play a role?. Veterinary Parasitology, 221, 76–83. CrossrefGoogle Scholar

  • Khong H.K., Kuah M.K., Jaya-Ram A., Shu-Chien A.C. 2009. Prolactin receptor mRNA is upregulated in discus fish (Symphysodonaequifasciata) skin during parental phase. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 153, 18–28. CrossrefGoogle Scholar

  • LaFrentz B.R., LaPatra S.E., Jones G.R., Congleton J.L., Sun B., Cain K.D. 2002. Characterization of serum and mucosal antibody responses and relative per cent survival in rainbow trout, Oncorhynchus mykiss (Walbaum), following immunization and challenge with Flavobacterium psychrophilum. Journal of Fish Diseases, 25, 703–713. CrossrefGoogle Scholar

  • LaMarre E., Cochran P.A. 1992. Lack of host species selection by the exotic parasitic crustacean, Argulus japonicus. Journal of Freshwater Ecology, 7, 77–80. CrossrefGoogle Scholar

  • Lee Y.B., Satoh J.I., Walker D.G., Kim S.U., 1996. Interleukin-15 gene expression in human astrocytes and microglia in culture. Neuroreport, 7, 1062–1066.PubMedCrossrefGoogle Scholar

  • Lester R.J.G., Roubal F. 1995. Phylum Arthropoda. In: (Ed. P.T.K. Woo) Fish Diseases and Disorders. Vol. I. Protozoan and Metazoan Infections. CAB International, Wallingford, U.K., pp. 475–598Google Scholar

  • Lindenstr⊘m T., Buchmann K., Secombes C.J. 2003. Gyrodactylus derjavini infection elicits IL-1β expression in rainbow trout skin. Fish & Shellfish Immunology, 15,107–115. CrossrefPubMedGoogle Scholar

  • Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408. CrossrefGoogle Scholar

  • Maki J.L., Dickerson H.W. 2003. Systemic and cutaneous mucus antibody responses of channel catfish immunized against the protozoan parasite Ichthyophthirius multifiliis. Clinical and Diagnostic Laboratory Immunology, 10, 876–881. CrossrefPubMedGoogle Scholar

  • Mohanty B.R., Sahoo P.K. 2010. Immune responses and expression profiles of some immune-related genes in Indian major carp Labeo rohita to Edwardsiella tarda infection. Fish & Shellfish Immunology, 28, 613–621PubMedCrossrefGoogle Scholar

  • Nigam A.K., Kumari U., Mittal S., Mittal A.K. 2012. Comparative analysis of innate immune parameters of the skin mucous secretions from certain freshwater teleosts, inhabiting different ecological niches. Fish Physiology and Biochemistry, 38, 1245–1256. CrossrefPubMedGoogle Scholar

  • Palaksha K.J., Shin G.W., Kim Y.R., Jung T.S. 2008. Evaluation of non-specific immune components from the skin mucus of olive flounder (Paralichthys olivaceus). Fish & Shellfish Immunology, 24, 479–488. CrossrefPubMedGoogle Scholar

  • Pérez-Sánchez J., Bermejo-Nogales A., Calduch-Giner J.A., Kaushik S., Sitjà-Bobadilla A. 2011. Molecular characterization and expression analysis of six peroxiredoxin paralogous genes in gilthead sea bream (Sparus aurata): insights from fish exposed to dietary, pathogen and confinement stressors. Fish & Shellfish Immunology, 31, 294–302. CrossrefPubMedGoogle Scholar

  • Pickering A.D. 1974.The distribution of mucous cells in the epidermis of the brown trout Salmo trutta (L.) and the char Salvelinus alpinus (L.). Journal of Fish Biology, 6, 111–118. CrossrefGoogle Scholar

  • Provan F., Jensen L.B., Uleberg K.E., Larssen E., Rajalahti T., Mullins J., Obach A. 2013. Proteomic analysis of epidermal mucus from sea lice–infected Atlantic salmon, Salmo salar L. Journal of Fish Diseases, 36, 311–321. CrossrefPubMedGoogle Scholar

  • Ren Y., Zhao H., Su B., Peatman E., Li C. 2015. Expression profiling analysis of immune-related genes in channel catfish (Ictalurus punctatus) skin mucus following Flavobacterium columnare challenge. Fish & Shellfish Immunology, 46, 537–542. CrossrefPubMedGoogle Scholar

  • Robinson N., Sahoo P.K., Baranski M., Mahapatra K.D., Saha J.N., Das S., Mishra Y., Das P., Barman H.K., Eknath A.E. 2012. Expressed sequences and polymorphisms in rohu carp (Labeo rohita, Hamilton) revealed by mRNA-seq. Marine Biotechnology, 14, 620–633. CrossrefGoogle Scholar

  • Rochman Y., Spolski R., Leonard W.J. 2009. New insights into the regulation of T cells by γc family cytokines. Nature Reviews Immunology, 9, 480–490. CrossrefGoogle Scholar

  • Sahoo P.K., Mohanty J., Garnayak S.K., Mohanty B.R., Kar B., Jena J.K., Prasanth H. 2013a. Genetic diversity and species identification of Argulus species collected from different aquaculture regions of India using RAPD-PCR. Aquaculture Research, 44, 220–230CrossrefGoogle Scholar

  • Sahoo P.K., Mohanty J., Garnayak S.K., Mohanty B.R., Kar, B., Prasanth, H., Jena, J.K. 2013b. Estimation of loss due to argulosis in carp culture ponds in India. Indian Journal of Fisheries, 66, 99–102Google Scholar

  • Sahoo P.K., Mohanty J., Kar B., Mohanty B.R., Garnayak S.K., Jena J.K. 2013c. Egg laying strategies and effect of temperature on egg development of Argulus siamensis. Journal of Parasitic Diseases, 37, 158–162. CrossrefGoogle Scholar

  • Saurabh S., Sahoo P.K. 2008. Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research, 39, 223–239. CrossrefGoogle Scholar

  • Saurabh S., Mohanty B.R., Sahoo P.K. 2011. Expression of immune-related genes in rohu Labeo rohita (Hamilton) by experimental freshwater lice Argulus siamensis (Wilson) infection. Veterinary Parasitology, 175, 119–128. CrossrefPubMedGoogle Scholar

  • Saurabh S., Sahoo P.K., Mohanty B.R., Mohanty J., Jena J.K., Mukherjee S.C., Sarangi N. 2010. Modulation of the innate immune response of rohu Labeo rohita (Hamilton) by experimental freshwater lice Argulus siamensis (Wilson) infection. Aquaculture Research, 41, e326–e335. CrossrefGoogle Scholar

  • Scheller J., Chalaris A., Schmidt-Arras D., Rose-John S. 2011. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813, 878–888. CrossrefGoogle Scholar

  • Secombes C.J., Zou J., Laing K., Daniels G.D., Cunningham C. 1999. Cytokine genes in fish. Aquaculture, 172, 93–102CrossrefGoogle Scholar

  • Shephard K.L. 1994. Functions for fish mucus. Reviews in Fish Biology and Fisheries, 4, 401–429. CrossrefGoogle Scholar

  • Shimura S., Inoue K. 1984. Toxic effects of extract from the mouth-parts of Argulus coregoniThorell (Crustacea: Branchiura) [taken from rainbow trout and masu trout]. Bulletin of the Japanese Society of Scientific Fisheries, 50, 729CrossrefGoogle Scholar

  • Sigh J., Lindenstr⊘m T., Buchmann K. 2004a. Expression of proinflammatory cytokines in rainbow trout (Oncorhynchus mykiss) during an infection with Ichthyophthirius multifiliis. Fish & Shellfish Immunology, 17, 75–86. CrossrefGoogle Scholar

  • Sigh J., Lindenstr⊘m T., Buchmann K. 2004b. The parasitic ciliate Ichthyophthirius multifiliis induces expression of immune relevant genes in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 27, 409–417. CrossrefGoogle Scholar

  • Subramanian S., MacKinnon S L., Ross N.W. 2007. A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 148, 256–263. CrossrefGoogle Scholar

  • Tsutsui S., Tasumi S., Suetake H., Suzuki Y. 2003. Lectins homologous to those of monocotyledonous plants in the skin mucus and intestine of pufferfish, Fugu rubripes. Journal of Biological Chemistry, 278, 20882–20889. CrossrefGoogle Scholar

  • Tsutsui S., Tasumi S., Suetake H., Kikuchi K., Suzuki Y. 2005. Demonstration of the mucosal lectins in the epithelial cells of internal and external body surface tissues in pufferfish (Fugu rubripes). Developmental and Comparative Immunology, 29, 243–253. .CrossrefPubMedGoogle Scholar

  • Valero Y., Martínez-Morcillo F.J., Esteban M., Chaves-Pozo E., Cuesta A. 2015. Fish peroxiredoxins and their role in immunity. Biology, 4, 860–880. CrossrefPubMedGoogle Scholar

  • Wang T., Holland J.W., Carrington A., Zou J., Secombes C.J. 2007. Molecular and functional characterization of IL-15 in rainbow trout Oncorhynchus mykiss: a potent inducer of IFN-γ expression in spleen leukocytes. The Journal of Immunology, 3, 1475–1488. CrossrefGoogle Scholar

  • Xu Z., Parra D., Gómez D., Salinas I., Zhang Y.A., von GersdorffJ⊘rgensen L., Heinecke R.D., Buchmann K., LaPatra S., Sunyer J O. 2013. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proceedings of the National Academy of Sciences, 110, 13097–13102. CrossrefGoogle Scholar

About the article

Received: 2017-04-10

Revised: 2017-10-31

Accepted: 2017-11-03

Published Online: 2018-01-17

Published in Print: 2018-03-26


Citation Information: Acta Parasitologica, Volume 63, Issue 1, Pages 125–133, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0014.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in