Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 63, Issue 2

Issues

Patterns of the parasite communities in a fish assemblage of a river in the Brazilian Amazon region

Raimundo Rosemiro Jesus Baia
  • Embrapa Amapá, Macapá, Amapá, Brazil
  • Postgraduate Program on Tropical Biodiversity, Federal University of Amapá, Macapá, Amapá, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexandro Cezar Florentino
  • Postgraduate Program on Tropical Biodiversity, Federal University of Amapá, Macapá, Amapá, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luís Maurício Abdon Silva
  • Institute of Scientific and Technological Research of the State of Amapá (IEPA), Macapá, Amapá, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcos Tavares-Dias
Published Online: 2018-04-13 | DOI: https://doi.org/10.1515/ap-2018-0035

Abstract

This paper characterizes the pattern of ectoparasite and endoparasite communities in an assemblage of 35 sympatric fish from different trophic levels in a tributary from the Amazon River system, northern Brazil. In detritivorous, carnivorous, omnivorous and piscivorous hosts, the species richness consisted of 82 ectoparasites and endoparasites, but protozoan ectoparasites such as Ichthyophthirius multifiliis, Piscinoodinium pillulare and Tripartiella sp. were dominant species predominated, such that they were present in 80% of the hosts. The taxon richness was in the following order: Monogenea > Nematoda > Digenea > Crustacea > Protozoa > Acanthocephala = Cestoda > Hirudinea. Among the hosts, the highest number of parasitic associations occurred in Satanoperca jurupari, Aequidens tetramerus, Hoplerythrinus unitaeniatus, Hoplosternum littorale, Cichlasoma amazonarum, Chaetobranchus flavescens, Squaliforma emarginata, Chaetobranchopsis orbicularis and Hoplias malabaricus. A weak positive correlation between ectoparasite abundance and length of the hosts was observed. Ectoparasite communities of detritivorous, carnivorous and omnivorous hosts were similar, but these differed from the communities of piscivorous hosts. Larval endoparasite species with low host specificity were the main determinants of the parasite infracommunity structure of the fish assemblage. Fish assemblage had few species of helminth that were specialist endoparasites, while many were parasites at the larval stage, infecting intermediate and paratenic hosts. Finally, carnivorous and omnivorous hosts harbored endoparasite communities that were more heterogeneous than those of detritivorous and piscivorous hosts. This result lends supports to the notion that the feeding habits of the host species are a significant factor in determining the endoparasites fauna.

Keywords: Amazon; Brazil; trophic level; parasites

References

  • Albert J.S., Reis R.E. 2011. Introduction to Neotropical freshwaters. In: Albert J.S., Reis R.E. (Eds). Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley, pp. 3–19Google Scholar

  • Alcântara N.M., Tavares-Dias, M. 2015. Structure of the parasite communities in two Erythrinidae fish from Amazon River system (Brazil). Brazilian Journal of Veterinary Parasitology,24, 183–190Google Scholar

  • Beevi M.R., Radhakrishnan S. 2012. Community ecology of the metazoan parasites of freshwater fishes of Kerala. Journal of Parasitic Diseases, 36, 184–196CrossrefGoogle Scholar

  • Bellay S., Oliveira E.F., Almeida-Neto M., Lima-Junior D.P., Takemoto R. M., Luque J.L. 2013. Developmental stage of parasites influences the structure of fish-parasite networks. Plos One, 8, e75710. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Bellay S., Oliveira E.F., Almeida-Neto M., Abdallah V.D., Azevedo R.K., Takemoto R. M., Luque J.L. 2015. The patterns of organization and structure of interactions in a fish-parasite network of a Neotropical river. International Journal for Parasitology, 45, 549–557. http://dx.DOI.org/10.1016/j.ijpara.2015.03.003Crossref

  • Bittencourt L.S., Pinheiro D.A., Cárdenas M.Q., Fernandes B.M., Tavares-Dias M. 2014a. Parasites of native Cichlidae populations and invasive Oreochromis niloticus (Linnaeus, 1758) in tributary of Amazonas River (Brazil). Brazilian Journal of Veterinary Parasitology, 23, 44–54Google Scholar

  • Bittencourt L.S., Silva U.R.L., Silva L.M.A. Tavares-Dias M. 2014b. Impact of the invasion from Nile tilapia on natives Cichlidae species in tributary of Amazonas River, Brazil. Biota Amazônia, 4, 88–94CrossrefGoogle Scholar

  • Bush A.O., Lafferty K.D., Lotz J.M., Shostak W. 1997. Parasitology meets ecology on its own terms: Margolis et al. Revisited. Journal of Parasitology, 83, 575–583CrossrefGoogle Scholar

  • Choudhury A., Dick T.A. 2000. Richness and diversity of helminth communities in tropical freshwater fishes: empirical evidence. Journal of Biogeography, 27, 935–956CrossrefGoogle Scholar

  • Dormann C.F., Fruend J., Bluethgen N., Gruber B. 2009. Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7–24CrossrefGoogle Scholar

  • Froese R., Pauly D., Editors. 2017. Fish Base. World Wide Web electronic publication. www.fishbase.org, version (06/2017)Google Scholar

  • Garcez R.C.S., Souza, L.A., Frutuoso M.E., Freitas C.E.C. 2017. Seasonal dynamic of Amazonian small-scale fisheries is dictated by the hydrologic pulse. Boletim do Instituto da Pesca, 43, 207–221CrossrefWeb of ScienceGoogle Scholar

  • Guégan J.F., Lambert A., Lévêdque C., Combes C., Euzet L. 1992. Can host body size explain the parasite species richness in tropical freshwater fishes? Oecologia, 90, 197–204. CrossrefPubMedGoogle Scholar

  • Grutter A.S. 1994. Spatial and temporal variations of the ectoparasites of seven reef fish species from Lizard Island and Heron Island, Australia. Marine Ecology Progress Series, 115, 21–30CrossrefGoogle Scholar

  • Hammer O., Harper D.A.T., Ryan P.D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9Google Scholar

  • Hoshino M.D.F.G., Neves L.R., Tavares-Dias M. 2016. Parasite communities of the predatory fish, Acestrorhynchus falcatus and Acestrorhynchus falcirostris, living in sympatry in Brazilian Amazon. Brazilian Journal of Veterinary Parasitology, 25, 207–216. http://dx.DOI.org/10.1590/S1984-29612016038

  • Junk W.J. 2013. Current state of knowledge regarding South America wetlands and their future under global climate change. Aquatic Sciences, 75, 113–131CrossrefWeb of ScienceGoogle Scholar

  • Lafferty K.D., Allesina S., Arim M., Briggs C.J., De Leo G., Dobson A.P., et al. 2008. Parasites in food webs: the ultimate missing links. Ecology Letters, 11, 533–546. CrossrefWeb of SciencePubMedGoogle Scholar

  • Kennedy C.R. 1990. Helminth communities in freshwater fish: structured communities or stochastic assemblages? In: Esch G.W., Busch A.O, Aho J.M. (Eds) Parasite communities: patterns and processes. Chapman and Hall, pp. 131–156Google Scholar

  • Krebs C.J. 1999. Ecological methodology. Addison-Wesley Educational Publishers, pp. 581Google Scholar

  • Kuris A.M., Blaustein, A.R., Alió J.J. 1980. Hosts as islands. American Naturalist, 116, 570–586CrossrefGoogle Scholar

  • Luque J.L., Poulin R. 2007. Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity. Parasitology, 134, 865–878.CrossrefWeb of SciencePubMedGoogle Scholar

  • Luque J.L., Poulin R. 2008. Linking ecology with parasite diversity in Neotropical fishes. Journal of Fish Biology, 72, 189–204. CrossrefWeb of ScienceGoogle Scholar

  • Marcogliese D.J. 2002. Food webs and the transmission of parasites to marine fish. Parasitology, 124, 83–99Google Scholar

  • Marcogliese D.J., Cone D.K. 1997. Food webs: a plea for parasites. Trends in Ecology & Evolution, 12, 320–325CrossrefPubMedGoogle Scholar

  • Oksanen J.F., Blanchet G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O‘Hara R. B., Simpson G.L., Solymos P., Stevens M.H.H., Szoecs E., and Wagner H. 2017. Vegan: Community Ecology Package. R Package version 2.4–3. https://CRAN.R-project.org/package=vegan

  • Pérez-Ponce de León, Choudhury A. 2005. Biogeography of helminth parasites of freshwater fishes in Mexico: the search for patterns and processes. Journal of Biogeography, 32, 645–659CrossrefGoogle Scholar

  • Poulin R. 2001. Another look at the richness of helminth communities in tropical freshwater fishes. Journal of Biogeography, 28, 737–743CrossrefGoogle Scholar

  • Poulin R. 2004a. Macroecological patterns of species richness in parasite assemblages. Basic Applied Ecology, 5, 423–434CrossrefGoogle Scholar

  • Poulin R. 2004b. Parasite species richness in New Zealand fishes: a grossly underestimated component of biodiversity? Diversity and Distributions, 10, 31–37CrossrefGoogle Scholar

  • Poulin R., Leung T.L.F. 2011. Body size, trophic level, and the use of fish as transmission routes by parasites. Oecologia, 166, 731–738. CrossrefWeb of SciencePubMedGoogle Scholar

  • R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org.

  • Ruehle B.P., Herrmann K.K., Higgins, C.L. 2017. Helminth parasite assemblages in two cyprinids with different life history strategies. Aquatic Ecology, 51, 247–256CrossrefWeb of ScienceGoogle Scholar

  • Valtonen E.T., Marcogliese D.J., Julkunen M. 2010. Vertebrate diets derived from trophically transmitted fish parasites in the Bothnian Bay. Oecologia, 162, 139–152Web of SciencePubMedCrossrefGoogle Scholar

  • Salgado-Maldonado G., Novelo-Turcotte M.T., Caspeta-Mandujano J.M., Vazquez-Hurtado G., Quiroz-Martínez B., Mercado-Silva N., Favila M. 2016. Host specificity and the structure of helminth parasite communities of fishes in a Neotropical river in Mexico. Parasite, 23, 61. CrossrefGoogle Scholar

  • Silva A.Q., Takiyama L.R., Costa-Neto S.V., Silveira O.F.M. 2009. Valoração ambiental das unidades fitoecológicas remanescentes da bacia hidrográfica do Igarapé Fortaleza. OLAMCiência & Tecnologia, 9, 354–384Google Scholar

  • Takiyama L.R., Silva A.Q., Costa W.J.P., Nascimento H.S. 2004. Qualidade das águas das ressacas das bacias do Igarapé da Fortaleza e do Rio Curiaú. In: (Eds. Takiyama L.R., Silva A.Q). Diagnostico das ressacas do Estado do Amapá: bacias do Igarapé da Fortaleza e Rio Curiaú, Macapá-AP. CPAQ/IEPA e DGEO/SEMA, Macapá, pp. 81–104.(In Portuguese)Google Scholar

  • Takiyama L.R., (et al.). 2012. Projeto zoneamento ecológico econômico urbano das áreas de ressacas de Macapá e Santana, estado do Amapá: relatório técnico final. Luis Roberto Takiyama. Macapá: IEPA, pp. 84 (In Portuguese)Google Scholar

  • Tavares-Dias M., Oliveira M.S.B., Gonçalves R.A., Silva L.M.A. 2014. Ecology and seasonal variation of parasites in wild Aequidens tetramerus, a Cichlidae from the Amazon. Acta Parasitologica, 59, 158-164. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Tavares-Dias M., Gonçalves R.A., Oliveira M.S.B., Neves L.R. 2017. Ecological aspects of the parasites in Cichlasoma bimaculatum (Cichlidae), ornamental fish from the Brazilian Amazon. Acta Biológica Colombiana, 22, 175–180. http://dx.DOI.org/10.15446/abc.v22n2.60015

  • Thomaz D.O., Costa Neto S.V., Tostes L.C.L. 2004. Inventario florístico das ressacas das bacias do Igarapé da Fortaleza e do Rio Curiaú. In: (Eds. Takiyama L.R., Silva A.Q). Diagnostico das ressacas do Estado do Amapá: bacias do Igarapé da Fortaleza e Rio Curiaú, Macapá-AP. CPAQ/IEPA e DGEO/SEMA, Macapá, pp. 1–22 (In Portuguese)Google Scholar

  • Timi J.T., Rossin M.A., Alarcos A.J., Braicovich P.E., Cantatore D.M.P., Lanfranchi A.L. 2011. Fish trophic level and the +similarity of non-specific larval parasite assemblages. International Journal for Parasitology, 41, 309–316. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Walker JG, Hurford A, Cable J, Ellison AR, Price SJ, Cressler CE. 2017. Host allometry influences the evolution of parasite host-generalism: theory and meta-analysis. Philosophical Transactions of the Royal Society B, 372, 20160089. http://dx.DOI.org/10.1098/rstb.2016.0089Web of ScienceCrossref

  • Zar J.H. 2010. Biostatistical analysis. 5th ed. Prentice Hall, New Jersey, pp. 944Google Scholar

About the article

Received: 2017-11-13

Revised: 2018-01-18

Accepted: 2018-01-19

Published Online: 2018-04-13

Published in Print: 2018-06-26


Citation Information: Acta Parasitologica, Volume 63, Issue 2, Pages 304–316, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0035.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in