Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 63, Issue 2

Issues

Isolation, identification and characterization of the nematophagous fungus Arthrobotrys (Monacrosporium) sinense from China

Ya-Juan Xue / Er-Le Li
  • Corresponding author
  • Yan’an People’s Hospital, Yan’an, 716000, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cai-Xia Jing / Li Ma / Kui-Zheng Cai
  • Corresponding author
  • College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, 730030, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-13 | DOI: https://doi.org/10.1515/ap-2018-0037

Abstract

With the development of anthelmintic resistance of parastic nematodes, it is necessary to isolate and study nematophagous fungi to screen out the native isolates for their potential in the biocontrol of domestic animal nematodosis. This study aimed to isolate the Arthrobotrys sinense (Monacrosporium sinense) of nematophagous fungus, to characterize representative molecular isolates using scanning electron microscope (SEM), and to determine the effect of the temperature and pH values on radial growth of the isolate. Five isolates were isolated from 1532 samples of different types, and their occurrence frequencies were 0.32% of the total samples. They were identified as A. sinense by means of morphology and the sequence of the 5.8S, 18S, and 28S rDNA, as well as internal transcribed spacers 1 and 2. The isolate NBS003 could grow from 11°C to 35°C and had optimal growth at 30°C. The isolate could grow at pH 4 to 11, and its optimal value was obtained at pH 9. SEM results showed that 6 h after their addition, the second stage larvae (L2) and the third stage infective larvae (L3) of Haemonchus contortus were captured. L2 and L3 were penetrated by the fungus at 18 and 24 h post-capture, respectively. L2 and L3 were completely digested at 84 and 90 h post-capture, respectively. The NBS003 of the A. sinense should have a certain potential to be used for capturing the free-living stage of nematodes in sheep.

Keywords: Nematophagous fungi; Arthrobotrys sinense (Monacrosporium sinense); Haemonchus contortus; rDNA; scanning electron microscope

References

  • Barçante J.M., Barçante T.A., Dias S.R., Vieira L.Q., Lima W.S., Negrão-Corrêa D. 2003. A method to obtain axenic Angiostrongylus vasorum firststage larvae from dog feces. Parasitology Research, 89, 89–93. CrossrefGoogle Scholar

  • Boguś M.I., Czygier M., Kedra E., Samborski J. 2005. In vitro assessment of the influence of nutrition and temperature on growing rates of five Duddingtonia flagrans isolates, their insecticidal properties and ability to impair Heligmosomoides polygyrus motility. Experimental Parasitology, 109, 115–123. CrossrefPubMedGoogle Scholar

  • Braga F.R., Araújo J.V. 2014. Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Applied Microbiology and Biotechnology, 98, 71–82. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Braga F.R., Silva A.R., Carvalho R.O., Araújo J.V., Guimarães P.H., Fujiwara R.T. et al. 2010. In vitro predatory activity of the fungi Duddingtonia flagrans, Monacrosporium thaumasium, Monacrosporium sinense and Arthrobotrys robusta on Ancylostoma ceylanicum third-stage larvae. Veterinary Microbiology, 20, 183–186. CrossrefWeb of ScienceGoogle Scholar

  • Cai K.Z., Liu J.L., Liu W., Wang B.B., Xu Q., Sun L.J., et al. 2016. Screening of different sample types associated with sheep and cattle for the presence of nematophagous fungi in China. Journal of Basic Microbiology, 56, 214–228. CrossrefWeb of SciencePubMedGoogle Scholar

  • Campos A.K., Araújo J.V., Guimarães M.P. 2008. Interaction between the nematophagous fungus Duddingtonia flagrans and infective larvae of Haemonchus contortus (Nematoda: Trichostrongyloidea). Journal of Helminthology, 82, 337–341. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Campos R.A., Boldo J.T., Pimentel I.C., Dalfovo V., Araújo W.L., Azevedo J.L., et al. 2010. Endophytic and entomopathogenic strains of Beauveria sp. to control the bovine tick Rhipicephalus (Boophilus) microplus. Genetics and Molecular Research, 9, 1421–1430. PMID:20662157CrossrefWeb of ScienceGoogle Scholar

  • Duddington C.L. 1955. Notes on the technique of handling predaceous fungi. Transactions of the British Mycological Society, 38, 97–103CrossrefGoogle Scholar

  • Falbo M.K., Soccol V.T., Sandini I.E., Vicente V.A., Robl D., Soccol C.R. 2013. Isolation and characterization of the nematophagous fungus Arthrobotrys conoides. Parasitology Research, 112, 177–185. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Falzon L.C., van Leeuwen J., Menzies P.I., Shakya K.P., Jones-Bitton A., Sears W., et al. 2013. Anthelmintic resistance in sheep flocks in Ontario. Canada Veterinary Parasitology, 193, 150–162. CrossrefGoogle Scholar

  • Grønvold J., Wolstrup J., Nansen P., Larsen, M., Henriksen S.A., H. Bjørn., et al. 1999. Biotic and abiotic factors influencing growth rate and production of traps by the nematode-trapping fungus Duddingtonia flagrans when induced by cooperia oncophora larvae. Journal of Helminthology, 73, 129–136. CrossrefGoogle Scholar

  • He S.Y., Ge Q.X. 1987. The mycoflora of cotton root-knot nematode (meloidogyne incognata). Acta Phytopathologica Sinica, 17, 14–21Google Scholar

  • Hsueh Y.P., Mahanti P., Schroeder F.C., Sternberg P.W. 2013. Nematode-trapping fungi eavesdrop on nematode pheromones. Current Biology, 23, 83–86. CrossrefWeb of ScienceGoogle Scholar

  • Inoué T., Osatake H. 1988. A new drying method of biological specimens for scanning electron microscopy: the t-butyl alcohol freeze-drying method. Archives of Histology and Cytology, 51, 53–59. PMID:3137948CrossrefPubMedGoogle Scholar

  • Kelly P., Good B., Hanrahan J.P., Fitzpatrick R., de Waal T. 2009. Screening for the presence of nematophagous fungi collected from Irish sheep pastures. Veterinary Parasitology, 165, 345–349. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Li J., Zou C., Xu J., Ji X., Niu X., Yang J., et al. 2015. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 53, 67–95. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Li T.F., Zhang K.Q., Liu X.Z. 2000. Taxonomy of Nematophagous Fungi. Chinese Scientific and Technological Publication, BeijingGoogle Scholar

  • Liu W., Han Y., Wang B.B., Sun L.J., Chen M.Y., Cai K.Z., et al. 2015. Isolation, identification, and characterization of the nematophagous fungus Monacrosporium salinum from China. Journal of Basic Microbiology, 55, 992–1001. CrossrefWeb of SciencePubMedGoogle Scholar

  • Liu X.Z., Zhang K.Q. 1994. Nematode-trapping species of Monacrosporium with special reNematode-trapping species of Monacrosporium with special reference to two new species ference to two new species. Mycological Progress, 98, 863. CrossrefGoogle Scholar

  • Li Y., Hyde K.D., Jeewon R., Cai L., Vijaykrishna D., Zhang K. 2005. Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia, 97, 1034–1046. PMID:16596955PubMedCrossrefGoogle Scholar

  • Maciel A.S., Araújo J.V., Campos A.K., Benjamin L.A., Freitas L.G. 2009. Scanning electron microscopy of Ancylostoma spp. dog infective larvae captured and destroyed by the nematophagous fungus Duddingtonia flagrans. Micron, 40, 463–470. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Manueli P.R., Waller P.J., Faedo M., Mahommed F. 1999. Biological control of nematode parasites of livestock in Fiji: screening of fresh dung of small ruminants for the presence of nematophagous fungi. Veterinary Parasitology, 81, 39–45. PMID:9950327PubMedCrossrefGoogle Scholar

  • Nordbring-hertz B. 1983. Dialysis membrane technique for studying microbial interaction. Applied and Environmental Microbiology, 45, 290–293PubMedGoogle Scholar

  • Nordbring-Hertz B., Friman E., Veenhuis M. 1989. Hyphal fusion during initial stages of trap formation in Arthrobotrys oligospora. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 55, 237–244. PMID: 2757366CrossrefGoogle Scholar

  • Ojedarobertos N.F., Torresacosta J.F., Ayalaburgos A.J., Sandovalcastro C.A., Valerocoss R.O., Mendozadegives P. 2009. Digestibility of Duddingtonia flagrans chlamydospores in ruminants: in vitro and in vivo studies. Bmc Veterinary Research, 5, 1–7. CrossrefWeb of ScienceGoogle Scholar

  • Olthof H.A., Estey R.H. 1965. Relation of some environmental factors to growth of several nematophagous Hyphomycetes. Canadian Journal of Microbiology, 11, 939–946. PMID: 5893825PubMedCrossrefGoogle Scholar

  • Paz-Silva A., Francisco I., Valero-Coss R.O., Cortiñas F.J., Sánchez J.A., Francisco R., et al. 2011. Ability of the fungus Duddingtonia flagrans to adapt to the cyathostomin egg-output by spreading chlamydospores. Veterinary Parasitology, 30, 277–282. CrossrefWeb of ScienceGoogle Scholar

  • Saitou N., Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425. PMID: 3447015Google Scholar

  • Sargison N.D. 2012. Pharmaceutical treatments of gastrointestinal nematode infections of sheep—future of anthelmintic drugs. Veterinary Parasitology, 189, 79–84. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Sissay M.M., Asefa A., Uggla A., Waller P. J. 2006. Anthelmintic resistance of nematode parasites of small ruminants in eastern ethiopia: exploitation of refugia to restore anthelmintic efficacy. Veterinary Parasitology, 135, 337–346CrossrefPubMedGoogle Scholar

  • Swe A., Li J., Zhang K.Q., Pointing S.B. 2011. Nematode-trapping fungi. Current Research in Environmental and Applied Mycology, 1, 1–26Google Scholar

  • Tucker S.L., Talbot N.J. 2001. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 39, 385–417. CrossrefPubMedGoogle Scholar

  • Tunlid A., Jansson S. 1991. Proteases and their involvement in the infection and immobilization of nematodes by the nematophagous fungus Arthrobotrys oligospora. Applied and Environmental Microbiology, 57, 2868–2872. PMID: 163 48563PubMedGoogle Scholar

  • Wang B.B., Liu W., Chen M.Y., Li X., Han Y., Xu Q., et al. 2015. Isolation and characterization of china isolates of Duddingtonia flagrans, a candidate of the nematophagous fungi for biocontrol of animal parasitic nematodes. Journal of Parasitology, 101, 476–484. CrossrefWeb of ScienceGoogle Scholar

  • Wang B.B., Wang F.H., Xu Q., Wang K.Y., Xue Y.J., Ren R., et al. 2017(a). In vitro and in vivo studies of the native isolates of nematophagous fungi from China against the larvae of trichostronglides. Journal of Basic Microbiology, 57, 265–275. CrossrefGoogle Scholar

  • Wang F.H., Xu Q., Wang B.B., Wang K.Y., Xue Y.J., Cai B., et al. 2017(b). Isolation, identification and characterization of the nematophagous fungus Arthrobotrys thaumasia (Monacrosporium thaumasium) from China. Biocontrol Science and Technology, 27, 378–392. CrossrefGoogle Scholar

  • White T.J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, 18, 315–322Google Scholar

  • Zhang K.Q., Hyde K.D. 2014. Nematode-trapping Fungi. In Fungal Diversity Research Series, 23, 41–210CrossrefGoogle Scholar

About the article

Received: 2018-01-03

Revised: 2018-01-29

Accepted: 2018-01-31

Published Online: 2018-04-13

Published in Print: 2018-06-26


Conflict of interestConflict of interest statement: All authors declare no financial or commercial conflicts of interest.


Citation Information: Acta Parasitologica, Volume 63, Issue 2, Pages 325–332, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0037.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in