Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 63, Issue 2

Issues

Evaluation of the protective effect of a prime-boost strategy with plasmid DNA followed by recombinant adenovirus expressing BmAMA1 as vaccines against Babesia microti infection in hamster

Guanbo Wang
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Longzheng Yu
  • Department of Veterinary Medicine, Yanbian University, Yanji, Jilin Province 133002, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Artemis Efstratiou
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paul Franck Adjou Moumouni
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mingming Liu
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Huanping Guo
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yang Gao
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shinuo Cao
  • State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mo Zhou
  • State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jixu Li
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aaron Edmond Ringo
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xuenan Xuan
  • Corresponding author
  • National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-13 | DOI: https://doi.org/10.1515/ap-2018-0042

Abstract

In the present study, we have investigated the protective effect of a heterologous prime-boost strategy with priming plasmid DNA followed by recombinant adenovirus, both expressing BmAMA1, against Babesia microti infection. Four groups consisting of 3 hamsters per group were immunized with pBmAMA1/Ad5BmAMA1, pNull/Ad5BmAMA1, pBmAMA1/Ad5Null and pNull/Ad5Null, followed by challenge infection with B. microti. Our results showed that hamsters immunized with plasmid and adenovirus expressing BmAMA1 developed a robust IgG and IgG2a antibody response against BmAMA1, suggesting the DNA vaccine or viral vector vaccine tend to induce a Th1-biased response. Compared to the control hamsters, the hamsters vaccinated either with the prime-boost strategy or one of the two “vaccines” exhibited no significant protection against B. microti challenge. Although a slight difference in terms of parasitemia and hematocrit values at days 14–16 post challenge infection was observed, no other statistical difference was detected. Our results indicate that the prime-boost vaccination strategy of injection of plasmid and adenovirus expressing BmAMA1 is not efficient in protecting against B. microti infection.

Keywords: Babesia microti; DNA vaccine; Adenovirus; Heterologous prime-boost; BmAMA1

References

  • Mountford A.P., Fisher A., Wilson R.A., 1994. The profile of lgCl and IgC2a antibody responses in mice exposed to Schistosoma mansoni. Parasite Immunology, 16, 521–527CrossrefGoogle Scholar

  • Anderson R.J., Schneider J., 2007. Plasmid DNA and viral vector-based vaccines for the treatment of cancer. Vaccine 25, 24–34. CrossrefWeb of ScienceGoogle Scholar

  • Caetano B.C., Bruña-romero O., Fux, B., Mendes E.A., Penido M.L.O., Gazzinelli R.T., 2006. Vaccination with Replication-Deficient Recombinant Adenoviruses Encoding the Main Surface Antigens of Toxoplasma gondii Induces Immune Response and Protection Against Infection in Mice. Human Gene Therapy 17, 415–426CrossrefPubMedGoogle Scholar

  • Campos-Neto A., 2005. What about Th1/Th2 in cutaneous leishmaniasis vaccine discovery? Brazilian Journal of Medical and Biological Research, 38, 979–984CrossrefGoogle Scholar

  • Dunachie S.J., Hill A.V.S., 2003. Review Prime-boost strategies for malaria vaccine development. The Journal of Experimental Biology, 206, 3771–3779. CrossrefPubMedGoogle Scholar

  • Dutta S., Sullivan J.S., Grady K.K., Haynes J.D., Komisar J., Adrian H., et al., 2009. High Antibody Titer against Apical Membrane Antigen-1 Is Required to Protect against Malaria in the Aotus Model PLoS One 4, e8138. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Harvey K.L., Yap A., Gilson P.R., Cowman A.F., Crabb B.S., 2014. Insights and controversies into the role of the key apicomplexan invasion ligand, Apical Membrane Antigen 1. International Journal for Parasitology, 44, 853–857. CrossrefWeb of ScienceGoogle Scholar

  • Hildebrandt A., Hunfeld K.P., Baier M., Krumbholz A., Sachse S., Lorenzen T., et al., 2007. First confirmed autochthonous case of human Babesia microti infection in Europe. European Journal of Clinical Microbiology & Infectious Diseases. 26, 595–601. CrossrefWeb of ScienceGoogle Scholar

  • Homer M.J., Aguilar-Delfin I., Telford S.R., Krause P.J., Persing D.H., 2000. Babesiosis. Clinical Microbiology Reviews, 13, 451–69. .CrossrefPubMedGoogle Scholar

  • Igarashi I., Suzuki R., Waki S., Tagawa Y.-I., Seng S., Tum S., et al., 1999. Roles of CD4+ T Cells and Gamma Interferon in Protective Immunity against Babesia microti Infection in Mice. Infection and Immunity. 67, 4143–4148PubMedGoogle Scholar

  • Indresh K.S., Margaret A.L., 2013. Gene Vaccines. Ann. Annals of Internal Medicine, 138, 550–559Google Scholar

  • Kochan G., Gherardi M.M., Esteban M., Pe E., 2006. MVA-LACK as a safe and efficient vector for vaccination against leishmaniasis. Microbes and Infection, 8, 810–822. CrossrefPubMedGoogle Scholar

  • Krause P.J., Gewurz B.E., Hill D., Marty F.M., Vannier E., Foppa I.M., et al., 2008. Persistent and relapsing babesiosis in immunocompromised patients. Clinical Infectious Diseases, 46, 370–376. CrossrefWeb of ScienceGoogle Scholar

  • Kumar S., Gubernot D.M., Nakhasi H.L., Mied P.A., Asher D.M., Epstein J.S., 2009. Transfusion-transmitted babesiosis in the United States: Summary of a workshop. Transfusion, 49, 2759–2771. CrossrefWeb of SciencePubMedGoogle Scholar

  • Liu M.A., Ulmer J.B., 2005. Human Clinical Trials of Plasmid DNA Vaccines. Advances in Genetics. 55, 25–40. CrossrefWeb of SciencePubMedGoogle Scholar

  • Marathe A, Tripathi J, Handa V, Date V. 2005. Human babesiosis – A case report. Indian Journal of Medical Microbiology, 23, 267–269PubMedGoogle Scholar

  • Moitra P., Zheng H., Anantharaman V., Banerjee R., Takeda K., Kozakai Y., et al. 2015. Expression, purification, and biological characterization of Babesia microti apical membrane antigen 1. Infection and Immunity, 83, 3890–3901. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Ramshaw I.A., Ramsay A.J., 2000. The prime-boost strategy: exciting prospects for improved vaccination. Immunology Today, 21Google Scholar

  • Reyes-Sandoval A., John T., Todryk S.M., 2007. Viral vector vaccines make memory T cells against malaria. Immunology 121, 158–165. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Stowers A.W., Kennedy M.C., Keegan B.P., Saul A., Long C.A., Miller L.H., Mmun I.N.I., 2002. Vaccination of Monkeys with Recombinant Plasmodium falciparum Apical Membrane Antigen 1 Confers Protection against Blood-Stage Malaria. Infection and Immunity 86, 6961–6967. CrossrefGoogle Scholar

  • Takeda A., Igarashi H., Nakamura H., Kano M., Iida A., Hirata T., et al., 2003. Protective Efficacy of an AIDS Vaccine, a Single DNA Priming Followed by a Single Booster with a Recombinant Replication-Defective Sendai Virus Vector, in a Macaque AIDS Model. Journal of Virology 92, 9710–9715. CrossrefGoogle Scholar

  • Vannier E., Gewurz B.E., Krause P.J., 2008. Human Babesiosis. Infectious Disease Clinics of North America 22. CrossrefWeb of ScienceGoogle Scholar

  • Wang G., Efstratiou A., Franck P., Moumouni A., Liu M., 2017. Experimental Parasitology Expression of truncated Babesia microti apical membrane protein 1 and rhoptry neck protein 2 and evaluation of their protective efficacy. Experimental Parasitology. 172, 5–11. CrossrefPubMedGoogle Scholar

  • Woodland D.L., 2004. Jump-starting the immune system : prime – boosting comes of age. Trends in Immunology, 25. CrossrefGoogle Scholar

  • Yu L., Yamagishi J., Zhang S., Jin C., Oluga G., 2012. Parasitology International Protective effect of a prime-boost strategy with plasmid DNA followed by recombinant adenovirus expressing TgAMA1 as vaccines against Toxoplasma gondii infection in mice. Parasitology International, 61, 481–486. CrossrefPubMedGoogle Scholar

  • Zhang G., Huang X., Boldbaatar D., Battur B., 2010. Construction of Neospora caninum stably expressing TgSAG1 and evaluation of its protective effects against Toxoplasma gondii infection in mice. Vaccine, 28, 7243–7247. CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

#Guanbo Wang and Longzheng Yu contributed equally to this study and should be considered as first co-authors


Received: 2017-06-30

Revised: 2018-02-10

Accepted: 2018-03-05

Published Online: 2018-04-13

Published in Print: 2018-06-26


Citation Information: Acta Parasitologica, Volume 63, Issue 2, Pages 368–374, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0042.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in