Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 63, Issue 2

Issues

First report of Cryptosporidium parvum in a dromedary camel calf from Western Australia

Alireza Zahedi / Gary K.C. Lee / Telleasha L. Greay / Audra L. Walsh / David J.C. Blignaut / Una M. Ryan
Published Online: 2018-04-13 | DOI: https://doi.org/10.1515/ap-2018-0049

Abstract

Cryptosporidium is an important enteric parasite that can contribute large numbers of infectious oocysts to drinking water catchments. As a result of its resistance to disinfectants including chlorine, it has been responsible for numerous waterborne outbreaks of gastroenteritis. Wildlife and livestock play an important role in the transmission of Cryptosporidium in the environment. Studies conducted outside Australia have indicated that camels may also play a role in the transmission of zoonotic species of Cryptosporidium. Despite Australia being home to the world’s largest camel herd, nothing is known about the prevalence and species of Cryptosporidium infecting camels in this country. In the present study, C. parvum was identified by PCR amplification and sequencing of a formalin-fixed intestinal tissue specimen from a one-week old dromedary camel (Camelus dromedarius). Subtyping analysis at the glycoprotein 60 (gp60) locus identified C. parvum subtype IIaA17G2R1, which is a common zoonotic subtype reported in humans and animals worldwide. Histopathological findings also confirmed the presence of large numbers of variably-sized (1–3 µm in diameter) circular basophilic protozoa – consistent with Cryptosporidium spp.– adherent to the mucosal surface and occasionally free within the lumen. Further analysis of the prevalence and species of Cryptosporidium in camel populations across Australia are essential to better understand their potential for contamination of drinking water catchments.

Keywords: Cryptosporidium; camel; 18S; actin; gp60

References

  • Al-Ruwaili M.A., Khalil O.M., Selim S.A. 2012. Viral and bacterial infections associated with camel (Camelus dromedarius) calf diarrhea in North Province, Saudi Arabia. Saudi Journal of Biological Sciences. 19, 35–41. CrossrefWeb of SciencePubMedGoogle Scholar

  • Appelbee A.J., Thompson R.C.A., Olson M.E. 2005. Giardia and Cryptosporidium in mammalian wildlife – current status and future needs. Trends in Parasitology, 21, 339–341. CrossrefGoogle Scholar

  • Baldursson S., Karanis P. 2011. Waterborne transmission of protozoan parasites: review of worldwide outbreaks – an update 2004-2010. Water Research, 45, 6603–6614. CrossrefWeb of SciencePubMedGoogle Scholar

  • Brim-Box J., Guest T., Barker P., Jambrecina M., Moran S., Kulitja R. 2010. Camel usage and impacts at a permanent spring in central Australia: a case study. The Rangeland Journal, 32, 55–62. CrossrefGoogle Scholar

  • Broglia A., Reckinger S., Cacció S.M., Nöckler K. 2008. Distribution of Cryptosporidium parvum subtypes in calves in Germany. Veterinary Parasitology, 154, 8–13. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Brown A. 2004. A review of camel diseases in central Australia. Department of Business, Industry and Resource Development Arid Zone Research Institute, Alice Springs, NTGoogle Scholar

  • Burnet J.B., Penny C., Ogorzaly L., Cauchie H.M. 2014. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: implications for monitoring and risk assessment. Science of Total Environment, 15, 1023–1035. CrossrefWeb of ScienceGoogle Scholar

  • Cauchie H.M., Burnet J.B., Penny C., Ogorzalya L. 2014. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: Implications for monitoring and risk assessment. Science of Total Environment, 47, 1023–1035. CrossrefWeb of ScienceGoogle Scholar

  • Certad G., Dupouy-Camet J., Gantois N., Hammouma-Ghelboun O., Pottier M., Guyot K., et al. 2015. Identification of Cryptosporidium Species in Fish from Lake Geneva (Lac Léman) in France. PloS ONE, 10: e0133047. CrossrefPubMedGoogle Scholar

  • Chalmers R.M., Robinson G., Elwin K., Hadfield S.J., Xiao L., Ryan U., et al. 2009. Cryptosporidium sp. rabbit genotype, a newly identified human Pathogen. Emerging Infectious Diseases, 15, 829–830. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Edwards G.P., Saafeld K., Clifford B. 2004 Population trend of feral camels in the Northern Territory, Australia. Wildlife Research, 31, 509–517. CrossrefGoogle Scholar

  • Edwards G.P., Zeng B., Saalfeld W.K., Vaarzon-Morel P., McGregor M. 2008. Managing the Impacts of Feral Camels in Australia: A New Way of Doing Business. DKCRC Report 47; Desert Knowledge Cooperative Research Centre: Alice Springs, AustraliaGoogle Scholar

  • Efstratiou A., Ongerth J.E., Karanis P. 2017. Waterborne transmission of protozoan parasites: Review of worldwide outbreaks – An update 2011-2016. Water Research, 114, 14–22. CrossrefPubMedWeb of ScienceGoogle Scholar

  • FAO (Food and Agriculture Organization of the United Nations) (2014) Food and agriculture organization of the united nations statistics division. FAOSTAT. Rome, Italy: FAO; Available from: http://faostat3.fao.org.Accessed 12/03/2017

  • Fayer R. 2004. Cryptosporidium: A waterborne zoonotic parasite. Veterinary Parasitology, 126, 37–56. CrossrefGoogle Scholar

  • Gómez-Couso H., Ortega-Mora L.M., Aguado-Martínez A., Rosadio-Alcántara R., Maturrano-Hernández L., Luna-Espinoza L., et al. 2012. Presence and molecular characterisation of Giardia and Cryptosporidium in alpacas (Vicugna pacos) from Peru. Veterinary Parasitology, 187, 414–420. CrossrefWeb of SciencePubMedGoogle Scholar

  • Hunter P.R., Hadfield S.J., Wilkinson D., Lake I.R., Harrison F.C.D., Chalmers R.M. 2007. Subtypes of Cryptosporidium parvum in humans and disease risk. Emerging Infectious Diseases, 13, 82–88. CrossrefWeb of SciencePubMedGoogle Scholar

  • Jezkova J., Horcickova M., Hlaskova, L., Sak B., Kvetonova D., Novak J. et al. 2016. Cryptosporidium testudinis sp. n., Cryptosporidium ducismarci Traversa, 2010 and Cryptosporidium tortoise genotype III (Apicomplexa: Cryptosporidiidae) in tortoises. Folia Parasitologica (Praha), 63. pii: 2016.035. CrossrefGoogle Scholar

  • Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Liu X., Zhou X., Zhong Z., Deng J., Chen W., Cao S., et al. 2014. Multilocus genotype and subtype analysis of Cryptosporidium andersoni derived from a Bactrian camel (Camelus bactrianus) in China. Parasitology Research, 113, 2129–2136. CrossrefWeb of SciencePubMedGoogle Scholar

  • Mi R., Wang X., Huang Y., Zhou P., Liu Y., Chen Y., et al. 2014. Prevalence and Molecular Characterization of Cryptosporidium in Goats across Four Provincial Level Areas in China. PLoS ONE, 9, e111164. CrossrefWeb of SciencePubMedGoogle Scholar

  • Muktar Y., Mamo G., Tesfaye B., Belina D. 2015. A review on major bacterial causes of calf diarrhea and its diagnostic method. Journal of Veterinary Medicine and Animal Health. 7, 173–185. CrossrefGoogle Scholar

  • Nazifi S., Behzadi M.A., Haddadi S., Raayat Jahromi A., Mehrshad S., Tamadon A. 2010. Prevalence of Cryptosporidium isolated from dromedary camels (Camelus dromedarius) in Qeshm Island, Southern Iran. Comparative Clinical Pathology, 19, 311–314. CrossrefGoogle Scholar

  • Ng J., Pavlasek I., Ryan U. 2006. Identification of novel Cryptosporidium genotypes from avian hosts. Applied and Environmental Microbiology, 72, 7548–7553. CrossrefPubMedGoogle Scholar

  • Ng J., Yang R., McCarthy S., Gordon C., Hijjawi N., Ryan U. 2011. Molecular characterization of Cryptosporidium and Giardia in pre-weaned calves in Western Australia and New South Wales. Veterinary Parasitology, 176, 145–150. CrossrefWeb of SciencePubMedGoogle Scholar

  • Nolan M.J., Jex A.R., Mansell P.D., Browning G.F., Gasser R.B. 2009. Genetic characterization of Cryptosporidium parvum from calves by mutation scanning and targeted sequencing-zoonotic implications. Electrophoresis, 30, 2640–2647. CrossrefWeb of SciencePubMedGoogle Scholar

  • Pople A.R., McLeod S.R. 2010. Demography of feral camels in central Australia and its relevance to population control. Rangeland Journal, 32, 11–19. CrossrefWeb of ScienceGoogle Scholar

  • Puleston R.L., Mallaghan C.M., Modha D.E., Hunter P.R., Nguyen Van Tam J.S., Regan C.M. et al., 2014. The first recorded outbreak of cryptosporidiosis due to Cryptosporidium cuniculus (formerly rabbit genotype), following a water quality incident. Journal of Water Health, 12, 41–50. CrossrefWeb of ScienceGoogle Scholar

  • Razavi S.M., Oryan A., Bahrami S., Mohammadalipour A., Gowhari M. 2009. Prevalence of Cryptosporidium infection in camels (Camelus dromedarius) in a slaughterhouse in Iran. Tropical Biomedicine, 26, 267–27Google Scholar

  • Robertson L., Bjorkman C., Axén C., Fayer R. 2014. Cryptosporidiosis in farmed animals. In: (Eds S.M. Cacciò and G. Widmer), Cryptosporidium: Parasite and Disease. Springer, Vienna, pp. 149–235Google Scholar

  • Ryan U., Fayer R., Xiao L. 2014. Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology, 141, 1667–1685. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Saalfeld W.K., Edwards G.P. 2010. Distribution and abundance of the feral camel (Camelus dromedarius) in Australia. Rangeland Journal, 32, 1–9. CrossrefWeb of ScienceGoogle Scholar

  • Sazmand A., Rasooli A., Nouri M., amidinejat H., Hekmatimoghaddam S. 2011. Prevalence of Cryptosporidium spp. in Camels and Involved People in Yazd Province, Iran. Iranian Journal of Parasitology, 1, 80–84Google Scholar

  • Silva S.O.S., Richtzenhain L.J., Barros I.N., Gomes A.M., Silva A.V., Kozerski N.D., et al. 2013. A new set of primers directed to 18S rRNA gene for molecular identification of Cryptosporidium spp. and their performance in the detection and differentiation of oocysts shed by synanthropic rodents. Experimental Parasitology, 135, 551–557. CrossrefWeb of SciencePubMedGoogle Scholar

  • Starkey S.R., Johnson A.L., Ziegler P.E., Mohammed H.O. 2007. An outbreak of cryptosporidiosis among alpaca crias and their human caregivers. Journal of American Veterinary Medicine Association, 231, 1562–1567. CrossrefGoogle Scholar

  • Tan E.T., Al Jassim R., D’Arcy B.R., Fletcher M.T. 2016. Chemistry, analysis, control, exposure and risk assessment. Food Additives and Contaminants. Part A, 33, 1587–1595Google Scholar

  • Waldron L.S., Dimeski B., Beggs P.J., Ferrari B.C., Power M.L. 2011. Molecular epidemiology, spatiotemporal analysis, and ecology of sporadic human cryptosporidiosis in Australia. Applied and Environmental Microbiology, 77, 7757–7765. CrossrefWeb of SciencePubMedGoogle Scholar

  • Wang R., Zhang L., Ning C., Feng Y., Jian F., Xiao L. et al. 2008. Multilocus phylogenetic analysis of Cryptosporidium andersoni (Apicomplexa) isolated from a bactrian camel (Camelus bactrianus) in China. Parasitology Research, 102, 915–920. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Wang R., Jian F., Zhang L., Ning C., Liu A., Zhao J., et al. 2012. Multilocus sequence subtyping and genetic structure of Cryptosporidium muris and Cryptosporidium andersoni. PLoS One, 7, e43782. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Wielinga P.R., de Vries A., van der Goot T.H., Mank T., Mars M.H., Kortbeek L.M., et al., 2008. Molecular epidemiology of Cryptosporidium in humans and cattle in The Netherlands. International Journal for Parasitology, 38, 809–817. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Xiao L., Zhou L., Santin M., Yang W., Fayer R. 2007. Distribution of Cryptosporidium parvum subtypes in calves in eastern United States. Parasitology Research, 100, 701–706. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Xiao L. 2010. Molecular epidemiology of cryptosporidiosis: an update. Experimental Parasitology, 124, 80–89. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Yakhchali M., Moradi T. 2012. Prevalence of Cryptosporidium-Like infection in one-humped camels (Camelus Dromedarius) of Northwestern Iran. Parasite, 19, 71–75. CrossrefPubMedGoogle Scholar

  • Yang R., Murphy C., Song Y., Ng-Hublin J., Estcourt A., Hijjawi N., et al. 2013. Specific and quantitative detection and identification of Cryptosporidium hominis and C. parvum in clinical and environmental samples. Experimental Parasitology, 135, 142–147. CrossrefWeb of ScienceGoogle Scholar

  • Zahedi A., Paparini A., Jian F., Robertson I., Ryan U. 2016. Public health significance of zoonotic Cryptosporidium species in wildlife: critical insights into better drinking water management. International Journal for Parasitology: Parasites and Wildlife, 5, 88–109. CrossrefWeb of SciencePubMedGoogle Scholar

  • Zahedi A., Durmic Z., Gofton A.W., Kueh S., Austen J., Lawson M., et al. 2017. Cryptosporidium homai n. sp. (Apicomplexa: Cryptosporidiiae) from the guinea pig (Cavia porcellus). Veterinary Parasitology. 245, 92–101. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Zhou L., Singh A., Jiang J., Xiao L. 2003. Molecular surveillance of Cryptosporidium spp. in raw wastewater in Milwaukee: implications for understanding outbreak occurrence and transmission dynamics. Journal of Clinical Microbiology, 41, 5254–5257. CrossrefPubMedGoogle Scholar

  • Ziegler P.E., Wade S.E., Schaaf S.L., Stern D.A., Nadareski C.A., Mohammed H.O. 2007. Prevalence of Cryptosporidium species in wildlife populations within a watershed landscape in southeastern New York State. Veterinary Parasitology, 147, 176–184. CrossrefWeb of SciencePubMedGoogle Scholar

About the article

Received: 2017-10-26

Revised: 2018-01-04

Accepted: 2018-01-08

Published Online: 2018-04-13

Published in Print: 2018-06-26


Conflict of interest: The authors declare that they have no conflict of interest.

Ethical approval: All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.


Citation Information: Acta Parasitologica, Volume 63, Issue 2, Pages 422–427, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0049.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in