Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

More options …
Volume 63, Issue 3


First molecular identification of an agent of diplostomiasis, Diplostomum pseudospathaceum (Niewiadomska 1984) in the United Kingdom and its genetic relationship with populations in Europe

Egie Elisha Enabulele
  • Corresponding author
  • Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin Nigeria, PMB 1154, Benin City, Africa
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agnes Ogheneruemu Awharitoma
  • Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin Nigeria, PMB 1154, Benin City, Africa
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Scott P. Lawton
  • Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, KT1 2EE, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ruth S. Kirk
  • Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, KT1 2EE, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-04 | DOI: https://doi.org/10.1515/ap-2018-0054


Trematode genus Diplostomum comprises of parasitic species which cause diplostomiasis, the ‘white eye’ disease in fish and heavy infection can result in mortality. The increasing availability of DNA sequences of accurately identified Diplostomum species on public data base presently enables the rapid identification of species from novel sequences. We report the first molecular evidence of the occurrence of D. pseudospathaceum in the United Kingdom. Two gene regions, nuclear internal transcribed spacer cluster (ITS1-5.8S-ITS2) and mitochondrial cytochrome c oxidase subunit 1 (cox1) of cercariae from infected aquatic snails, Lymnaea stagnalis collected in several locations in Southern England were sequenced. Phylogenetic analysis based on both sequenced genes revealed that the novel sequences were D. pseudospathaceum. Molecular diversity analysis of published D. pseudospathaceum cox1 sequences from seven countries in Europe and the novel sequences from the present study revealed high diversity, but low nucleotide divergence and a lack of gene differentiation between the populations. Haplotype network analysis depicted a star-like pattern and revealed a lack of geographic structure in the population. Fixation indices confirmed gene flow between populations and we suspect high levels of dispersal facilitated by highly mobile second intermediate (fish) and definitive (piscivorous birds) host may be driving gene flow between populations. Neutrality tests and mismatch distribution indicated recent population growth/expansion for D. pseudospathaceum in Europe.

Keywords: Diplostomum pseudospathaceum; Lymnaea stagnalis; United Kingdom; Europe; molecular diversity; population genetics


  • Avise J.C. 2000. Phylogeography: The history and Formation of Species. Harvard University Press, Cambridge, MA, pp. 447Google Scholar

  • Behrmann-Godel J. 2013. Parasite identification, succession and infection pathways in perch fry (Perca fluviatilis): new insights through a combined morphological and genetic approach. Parasitology, 140, 509–520. CrossrefWeb of SciencePubMedGoogle Scholar

  • Blair D. 1977. A key to cercariae of British strigeoids (Digenea) for which the life-cycles are known, and notes on the characters used. Journal of Helminthology, 51, 155–166. CrossrefPubMedGoogle Scholar

  • Brabec J., Kostadinova A., Scholz T., Littlewood D.T. 2015. Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens. Parasite and Vectors, 8, 336. CrossrefGoogle Scholar

  • Chappell L.H. 1995. The biology of diplostomatid eye flukes of fishes. Journal of Helminthology, 69, 97–101. CrossrefPubMedGoogle Scholar

  • Clement M., Posada D., Crandall K. 2000. TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1660. CrossrefPubMedGoogle Scholar

  • Erasmus D.A. 1958. Studies on the morphology, biology, and development of a strigeid cercariae (cercaria X Baylis). Parasitology, 48, 312–335. CrossrefPubMedGoogle Scholar

  • Fu Y.X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925PubMedGoogle Scholar

  • Georgieva S., Soldánová M., Pérez-Del-Olmo A., Dangel D.R., Sitko J., Sures B., et al. 2013. Molecular prospecting for European Diplostomum (Digenea: Diplostomidae) reveals cryptic diversity. International Journal of Parasitology, 43, 57–72. CrossrefWeb of ScienceGoogle Scholar

  • Haarder S., Jørgensen K., Kania P.W., Skovgaard A., Buchmann K. 2013. Occurrence of Diplostomum pseudospathaceum Niewiadomska, 1984 and D. mergi Dubois, 1932 (Digenea: Diplostomidae) in Danish freshwater snails: ecological and molecular data. Folia Parasitology, 60, 177–180. CrossrefGoogle Scholar

  • Hall T.A. 1999. BioEdit: a user friendly biological sequence alignment program editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98Google Scholar

  • Harpending H.C. 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology, 66, 591–600Google Scholar

  • Harrison R.G. 1989. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends in Ecology and Evolution, 4, 6–11. CrossrefGoogle Scholar

  • Hudson R.R., Slatkin M., Maddison W.P. 1992. Estimation of levels of gene flow from DNA sequence data. Genetics 132 (2), 583 – 589PubMedGoogle Scholar

  • Horák P., Kolářová L., Mikeš L. 2014. Schistosomatoidea and Diplostomoidea. Advances in Experimental Medicine and Biology, 766, 331–364. CrossrefWeb of SciencePubMedGoogle Scholar

  • Kudlai O., Oros M., Kostadinova A., Georgieva S. 2017. Exploring the diversity of Diplostomum (Digenea: Diplostomidae) in fishes from the River Danube using mitochondrial DNA barcodes. Parasite and Vectors, 10, 592. CrossrefGoogle Scholar

  • Librado P., Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452. CrossrefWeb of SciencePubMedGoogle Scholar

  • Leigh J.W., Bryant D. 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110–1116. CrossrefWeb of ScienceGoogle Scholar

  • Locke S.A., Al-Nasiri F.S., Caffara M., Drago F., Kalbe M., Lapierre A.R., et al. 2015. Diversity, specificity and speciation in larval Diplostomidae (Platyhelminthes: Digenea) in the eyes of freshwater fish, as revealed by DNA barcodes. International Journal of Parasitology, 45, 841–55. CrossrefWeb of ScienceGoogle Scholar

  • Louhi K.R., Karvonen A., Rellstab C., Jokela J. 2010. Is the population genetic structure of complex life cycle parasites determined by the geographic range of the most motile host? Infections Genetics and Evolution, 10, 1271–1277. CrossrefGoogle Scholar

  • Mckeown C.A., Irwin S.W. 1995. The life cycle stages of three Diplostomum species maintained in the laboratory. International Journal of Parasitology, 25, 897–906. CrossrefGoogle Scholar

  • Moritz C., Dowling T.E., Brown W.M. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18, 269–292. CrossrefGoogle Scholar

  • Morley N.J., Lewis J.W. 2007. Anthtropogenic pressure on a molluscan-trematode community over a long-term period in the Basingstoke Canal, UK, and its implications for ecosystem health. EcoHealth, 3, 269–280CrossrefGoogle Scholar

  • Moszczynska A., Locke S.A., Mclaughlin J.D., Marcogliese D.J., Crease T.J. 2009. Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Molecular Ecology Resources, 9, 75–82. CrossrefWeb of SciencePubMedGoogle Scholar

  • Nei M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70, 3321–3323CrossrefGoogle Scholar

  • Niewiadomska K. 1984. Present status of Diplostomum spathaceum (Rudolphi, 1819) and differentiation of Diplostomum pseudospathaceum nom. nov. (Trematoda: Diplostomatidae). Systematic Parasitology, 6, 81–86. CrossrefGoogle Scholar

  • Niewiadomska K. 1986. Verification of the life-cycles of Diplostomum spathaceum (Rudolphi, 1819) and D. pseudospathaceum Niewiadomska, 1984 (Trematoda, Diplostomidae). Systematic Parasitology, 8, 23–31. CrossrefGoogle Scholar

  • Niewiadomska K. 1996. The genus Diplostomum – taxonomy, morphology and biology. Acta Parasitologica, 41, 55–66Google Scholar

  • Olson P.D., Cribb T.H., Tkach V.V., Bray R.A., Littlewood D.T.J. 2003. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal of Parasitology, 33, 733–755. CrossrefGoogle Scholar

  • Pérez-Del-Olmo A., Georgieva S., Pula H.J., Kostadinova A. 2014. Molecular and morphological evidence for three species of Diplostomum (Digenea: Diplostomidae), parasites of fishes and fish-eating birds in Spain. Parasite and Vectors, 7, 502. CrossrefGoogle Scholar

  • Posada D., Crandall K.A. 2001. Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology and Evolution, 16, 37–45. CrossrefGoogle Scholar

  • RamõÂrez-Soriano A., Ramos-Onsins S.E., Rozas J., Calafell F., Navarro A. 2008. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics, 179, 555–567. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Ramos-Onsins S.E., Rozas J. 2002. Statistical properties of new neutrality test against population growth. Molecular Biology and Evolution, 19, 2092–2100. CrossrefPubMedGoogle Scholar

  • Rees G. 1955. The adult and Diplostomulum stage (Diplostomulum phoxini (Faust)) of Diplostomum pelmatoides Dubois and an experimental demonstration of part of the life cycle. Parasitology, 45, 295–312. CrossrefPubMedGoogle Scholar

  • Rogers A.R., Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–569. CrossrefPubMedGoogle Scholar

  • Selbach C., Soldánová M., Georgieva S., Kostadinova A., Sures B. 2015. Integrative taxonomic approach to the cryptic diversity of Diplostomum spp. in lymnaeid snails from Europe with a focus on the ‘Diplostomum mergi’ species complex. Parasite and Vectors, 8, 300. CrossrefGoogle Scholar

  • Slatkin M., Hudson R. R. 1991. Pairwise comparison of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129, 555–562PubMedGoogle Scholar

  • Tajima F. 1993. Statistical analysis of DNA polymorphism. The Japanese Journal of Genetics, 68, 567–595. CrossrefGoogle Scholar

  • Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. CrossrefWeb of SciencePubMedGoogle Scholar

  • Templeton A.R., Crandall K. A., Sing C.F. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequences data.III. Cladogram estimation. Genetics, 134, 659–669Google Scholar

  • Wang C.R., Li L., Ni H.B., Zhai Y.Q., Chen A.H., Chen J., et al. 2009. Orientobilharzia turkestanicum is a member of Schistosoma genus based on phylogenetic analysis using ribosomal DNA sequences. Experimental Parasitology, 121, 193–197. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Williams M.O. 1966. On some larval trematodes from Lymnaea peregra (Muller) in Scotland. Journal of Helminthology, 40, 245–252. CrossrefPubMedGoogle Scholar

About the article

Received: 2017-10-30

Revised: 2018-02-20

Accepted: 2018-03-02

Published Online: 2018-07-04

Published in Print: 2018-09-25

Citation Information: Acta Parasitologica, Volume 63, Issue 3, Pages 444–453, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0054.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in