Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

More options …
Volume 63, Issue 3


Assessment of oxidative/nitrosative stress biomarkers and DNA damage in Haemonchus contortus, following exposure to zinc oxide nanoparticles

Bijan Esmaeilnejad / Awat Samiei / Yousef Mirzaei
  • Veterinary Parasitology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
  • Department of Biology, Faculty of Sciences, Soran University, Soran, Iraq
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Farhad Farhang-Pajuh
  • Veterinary Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
  • Central Laboratory of Urmia University, Urmia, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-04 | DOI: https://doi.org/10.1515/ap-2018-0065


Drug resistance in helminth parasites has incurred several difficulties to livestock industry and ranked among the top public health concerns. Therefore, seeking for new agents to control parasites is an urgent strategy. In the recent years, metallic nanoparticles have been considerably evaluated for anthelmintic effects. The current research was conducted to assess possible anthelmintic impacts of zinc oxide nanoparticles (ZnO-NPs) on a prevalent gastrointestinal nematode, H. contortus. Moreover, several biomarkers of oxidative/nitrosative stress and DNA damage were measured. Various concentrations of the nanoparticle were prepared and incubated with the worms for 24 hours. The parasite mobility, mortality rate, antioxidant enzymes activities (SOD, Catalase and GSH-Px), lipid peroxidation, total antioxidant status as well as nitric oxide (NO) contents and DNA damage were determined. ZnO-NPs exerted significant wormicidal effects via induction of oxidative/nitrosative stress and DNA damage. Conclusively, ZnO-NPs can be utilized as a novel and potential agent to control and treatment of helminth parasitic infections.

Keywords: H. contortus; nanoparticles; oxidative stress; DNA damage; nitric oxide


  • Achi Y., Zinsstag J., Yao K., Yeo N., Dorchies P., Jacquiet P. 2003. Host specificity of Haemonchus spp. for domestic ruminants in the savanna in northern Ivory Coast. Veterinary Parasitology, 116, 151–158. CrossrefPubMedGoogle Scholar

  • Adeyemi O.S., Faniyan T.O. 2014. Antioxidant status of rats administered silver nanoparticles orally. Journal of Taibah University Medical Sciences, 9, 182–186. CrossrefGoogle Scholar

  • Adeyemi O.S., Whiteley C.G. 2013. Interaction of nanoparticles with arginine kinase from Trypanosoma brucei: kinetic and mechanistic evaluation. International Journal of Biological Macromolecules, 62, 450–456. CrossrefPubMedGoogle Scholar

  • Al-Quaisy H., Al-Zubaidy A., Altaif K., Makkawi T. 1987. The pathogenicity of haemonchosis in sheep and goats in Iraq: 1. Clinical, parasitological and haematological findings. Veterinary Parasitology, 24, 221–228. CrossrefPubMedGoogle Scholar

  • Aycicek A., Kocyigit A., Erel O., Senturk H. 2008. Phototherapy causes DNA damage in peripheral mononuclear leukocytes in term infants. Jornal de Pediatria, 84, 141–146. CrossrefPubMedGoogle Scholar

  • Azqueta A., Meier S., Priestley C., Gutzkow K.B., Brunborg G., Sallette J., Soussaline F., Collins A. 2011. The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis, 26, 393–399. CrossrefPubMedGoogle Scholar

  • Ben Smith A., Lammas D., Behnke J. 2002. Effect of oxygen radicals and differential expression of catalase and superoxide dismutase in adult Heligmosomoides polygyrus during primary infections in mice with differing response phenotypes. Parasite Immunology, 24, 119–129. CrossrefPubMedGoogle Scholar

  • Bhardwaj R., Saudagar P., Dubey V.K. 2012. Nanobiosciences: a contemporary approach in antiparasitic drugs. Molecular and Cellular Pharmacology, 4, 97–103Google Scholar

  • Buege J.A., Aust S.D. 1978. Microsomal lipid peroxidation, In: Methods in enzymology. Elsevier, 52, 302–310. CrossrefPubMedGoogle Scholar

  • Butkus M.A., Labare M.P., Starke J.A., Moon K., Talbot M. 2004. Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection. Applied and Environmental Microbiology, 70, 2848–2853. CrossrefPubMedGoogle Scholar

  • Chiumiento L., Bruschi F. 2009. Enzymatic antioxidant systems in helminth parasites. Parasitology Research, 105, 593. CrossrefPubMedGoogle Scholar

  • Cohen K., Nyska A. 2002. Oxidation of biological system: oxidative stress phenomena, antioxidants, redox reactions and method for their quantification. Toxicologic Pathology, 30, 620–650. CrossrefGoogle Scholar

  • Ding A.H., Nathan C.F., Stuehr D.J. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. The Journal of Immunology, 141, 2407–2412Google Scholar

  • Dorostkar R., Ghalavand M., Nazarizadeh A., Tat M., Hashemzadeh M.S. 2017. Anthelmintic effects of zinc oxide and iron oxide nanoparticles against Toxocara vitulorum. International Nano Letters, 7, 157–164. CrossrefGoogle Scholar

  • Elsami A., Rahbari S., Meydani M. 1981. Cestodes and trematodes of wild sheep, Ovis ammon orientalis, and goitered gazelle, Gazella subgutturosa, in Iran. Veterinary Parasitology, 8, 99–101. CrossrefGoogle Scholar

  • Eslami A., Fakhrzadegan F. 1972. Les Nématodes parasites du tube digestif des bovins en Iran. Revue D’élevage et de Médecine Vétérinaire des Pays Tropicaux, 25, 527–529. CrossrefGoogle Scholar

  • Eslami A., Fazy A. 1975. Study on gastrointestinal helminths of goats in Iran (in persian with English summary). Journal of Tehran Veterinary Faculty, 31, 68Google Scholar

  • Eslami A., Nabavi L. 1976. Species of gastro-intestinal nematodes of sheep from Iran. Bulletin de la Société de Pathologie Exotique, 69, 92–95Google Scholar

  • Eyambe G.S., Goven A.J., Fitzpatrick L., Venables B.J., Cooper E.L. 1991. A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies. Laboratory Animals, 25, 61–67. CrossrefPubMedGoogle Scholar

  • Franklin N.M., Rogers N.J., Apte S.C., Batley G.E., Gadd G.E., Casey P.S. 2007. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environmental Science & Technology, 41, 8484–8490CrossrefPubMedGoogle Scholar

  • Ghiselli A., Serafini M., Natella F., Scaccini C. 2001. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data, In: Bio-Assays for Oxidative Stress Status. Elsevier, 219–227. CrossrefGoogle Scholar

  • Green L.C., Wagner D.A., Glogowski J., Skipper P.L., Wishnok J.S., Tannenbaum S.R. 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry, 126, 131–138. CrossrefPubMedGoogle Scholar

  • Hadaś E., Stankiewicz M. 1998. Superoxide dismutase and total antioxidant status of larvae and adults of Trichostrongylus colubriformis, Haemonchus contortus and Ostertagia circumcincta. Parasitology Research, 84, 646–650. CrossrefPubMedGoogle Scholar

  • Hakimzadegan M., Khosroshahi M.K. 2013. Prevalence of Abomasal Nematodes in slaughtered Goats at industrial Urmia slaughterhouse, West Azerbaijan province, Northwest of Iran. Journal of Animal and Poultry Sciences, 2, 120–124Google Scholar

  • Henkle-Dührsen K., Kampkötter A. 2001. Antioxidant enzyme families in parasitic nematodes. Molecular and Biochemical Parasitology, 114, 129–142. CrossrefPubMedGoogle Scholar

  • Hu C., Li M., Cui Y., Li D., Chen J., Yang L. 2010. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biology and Biochemistry, 42, 586–591.CrossrefGoogle Scholar

  • Javanbakht J., Hosseini E., Mousavi S., Hassan M.A., Kazeroni S.S., Khaki F., et al. 2014. Evaluation of two Iranian domestic ovine breeds for their pathological findings to gastrointestinal infection of Haemonchus contortus. Journal of Parasitic Diseases, 38, 311–316. CrossrefGoogle Scholar

  • Jayaseelan C., Rahuman A.A., Rajakumar G., Kirthi A.V., Santhoshkumar T., Marimuthu S., et al. 2011. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitology Research, 109, 185–194. CrossrefPubMedGoogle Scholar

  • Kalantari H., Rezaei M., Mahdavinia M., Jahangirnejad R., Varnaseri G. 2012. Determination of the Mutagenicity Potential of Sankol Herbal Medicine by Single Cell Gel Electrophoresis in Rat Hepatocytes in Comparison With H2O2. Jundishapur Journal of Natural Pharmaceutical Products, 7, 123. CrossrefPubMedGoogle Scholar

  • Kamalzadeh A., Rajabbaigy M., Kiasat A. 2008. Livestock production systems and trends in livestock industry in Iran. Journal of agriculture and social sciences, 4, 183–188.Google Scholar

  • Khan Y.A., Singh B.R., Ullah R., Shoeb M., Naqvi A.H., Abidi S.M. 2015.Anthelmintic effect of biocompatible zinc oxide nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a neglected parasite of Indian water buffalo. PloS one 10, e0133086. CrossrefPubMedGoogle Scholar

  • Kotze A., McClure S. 2001. Haemonchus contortus utilises catalase in defence against exogenous hydrogen peroxide in vitro. International Journal for Parasitology, 31, 1563–1571. CrossrefPubMedGoogle Scholar

  • McCord J.M., Fridovich I. 1969. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244, 6049–6055Google Scholar

  • Mohebali M., Rezayat M., Gilani K., Sarkar S., Akhoundi B., Esmaeili J., et al. 2015. Nanosilver in the treatment of localized cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): an in vitro and in vivo study. DARU Journal of Pharmaceutical Sciences, 17, 285–289Google Scholar

  • Nair S., Sasidharan A., Rani V.D., Menon D., Nair S., Manzoor K., Raina S. 2009. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. Journal of Materials Science: Materials in Medicine, 20, 235. CrossrefGoogle Scholar

  • Nazarizadeh A., Asri-Rezaie S. 2016. Comparative study of antidiabetic activity and oxidative stress induced by zinc oxide nanoparticles and zinc sulfate in diabetic rats. American Association of Pharmaceutical Scientists, 17, 834–843. CrossrefGoogle Scholar

  • Önder Z., Yildirim A., Inci A., Düzlü Ö., Çıloģlu A. 2016. Molecular Prevalence, Phylogenetic Characterization and Benzimidazole Resistance of Haemonchus contortus from Sheep. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 22, 93–99Google Scholar

  • Preet S., Tomar R.S. 2017. Anthelmintic effect of biofabricated silver nanoparticles using Ziziphus jujuba leaf extract on nutritional status of Haemonchus contortus. Small Ruminant Research, 154, 45–51. CrossrefGoogle Scholar

  • Premanathan M., Karthikeyan K., Jeyasubramanian K., Manivannan G. 2011. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnology, Biology and Medicine, 7, 184–192. CrossrefGoogle Scholar

  • Rahimi M.T., Ahmadpour E., Esboei B.R., Spotin A., Koshki M.H.K., Alizadeh A., et al. 2015. Scolicidal activity of biosynthesized silver nanoparticles against Echinococcus granulosus protoscolices. International Journal of Surgery, 19, 128–133. CrossrefGoogle Scholar

  • Rashid M.M.O., Ferdous J., Banik S., Islam M.R., Uddin A.M., Robel F.N. 2016. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extract. BMC Complementary and Alternative Medicine, 16, 242. CrossrefGoogle Scholar

  • Reinecke S., Reinecke A. 2004. The comet assay as biomarker of heavy metal genotoxicity in earthworms. Archives of Environmental Contamination and Toxicology, 46, 208–215. CrossrefPubMedGoogle Scholar

  • Singh N.P., McCoy M.T., Tice R.R., Schneider E.L. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175, 184–191. CrossrefPubMedGoogle Scholar

  • Skerman K., Shahlapour A., Eslami A., Eliazian M. 1970. Observations on the incidence, epidemiology, control and economic importance of gastro intestinal parasites of sheep and goats in Iran. Archives of Razi Institute, 22, 187–196Google Scholar

  • Soflaei S., Dalimi A., Ghaffarifar F., Shakibaie M., Shahverdi A.R., Shafiepour M. 2012. In vitro antiparasitic and apoptotic effects of antimony sulfide nanoparticles on Leishmania infantum. Journal of Parasitology Research, 2012, 2012:756568. CrossrefPubMedGoogle Scholar

  • Soneja A., Drews M., Malinski T. 2005. Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacological Reports, 57, 108Google Scholar

  • Tiwari R., Verma A.K., Chakraborty S., Dhama K., Singh S.V. 2014. Neem (Azadirachta indica) and its potential for safeguarding health of animals and humans: A review. Journal of Biological Sciences, 14, 110. CrossrefGoogle Scholar

  • Tomar R., Preet S. 2016. Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus. Journal of helminthology, 91, 454–461. CrossrefGoogle Scholar

  • Torabi N., Mohebali M., Shahverdi A.R., Rezayat S.M., Edrissian G.H., Esmaeili J., Charehdar S. 2011. Nanogold for the treatment of zoonotic cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): an animal trial with methanol extract of Eucalyptus camaldulensis. Journal of Pharmaceutical Sciences, 113–116. CrossrefGoogle Scholar

  • Vandebriel R.J., De Jong W.H. 2012. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol, Science and Applications, 5, 61. CrossrefGoogle Scholar

  • Wang H., Wick R.L., Xing B. 2009. Toxicity of nanoparticulate and bulk ZnO, Al 2 O 3 and TiO 2 to the nematode Caenorhabditis elegans. Environmental Pollution, 157, 1171–1177. CrossrefGoogle Scholar

  • Wedrychowicz H. 2015. Antiparasitic DNA vaccines in 21st century. Acta Parasitologica 60, 179–189. CrossrefPubMedGoogle Scholar

  • Yan R., Wang J., Xu L., Song X., Li X. 2014. DNA vaccine encoding Haemonchus contortus actin induces partial protection in goats. Acta Parasitologica, 59, 698–709. CrossrefPubMedGoogle Scholar

About the article

Received: 2018-02-21

Revised: 2018-04-18

Accepted: 2018-04-20

Published Online: 2018-07-04

Published in Print: 2018-09-25

Interest competing. We do declare that there is no conflict of interest for the current research.

Citation Information: Acta Parasitologica, Volume 63, Issue 3, Pages 563–571, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0065.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in