Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 63, Issue 3

Issues

Morphological and molecular characterization of Paramphistomum epiclitum of small ruminants

Mehul M. Jadav
  • Department of Parasitology, College of Veterinary Science and Animal Husbandry, Navsari Agricultural University, Navsari-396 450, Gujarat, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Niranjan Kumar
  • Corresponding author
  • Department of Parasitology, College of Veterinary Science and Animal Husbandry, Navsari Agricultural University, Navsari-396 450, Gujarat, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bhupamani Das
  • Department of Parasitology, College of Veterinary Science and Animal Husbandry, Navsari Agricultural University, Navsari-396 450, Gujarat, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaesh B. Solanki
  • Department of Parasitology, College of Veterinary Science and Animal Husbandry, Navsari Agricultural University, Navsari-396 450, Gujarat, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-04 | DOI: https://doi.org/10.1515/ap-2018-0067

Abstract

Morphological and molecular identification can pave the way to design the most effective control measures against the Paramphistomum epiclitum in small ruminants. Morphology of the flukes had described the features of Paramphistomum genus. Body was conical with concave ventral and convex dorsal surface, tegumental spines all around the body in the immature stage, terminal funnel shape oral sucker, sub-terminal acetabulum, blind caeca with a serpentine course touching the anterior level of the acetabulum. Vitelline glands were at the lateral margins of the body extended from the pharynx to the posterior sucker. Testes were lobed and tandem, wavy post-testicular uterus and genital pore behind intestinal bifurcation. Sequence analyses of internal transcribed spacer (ITS)-2+ (PCR products of approximately 500 bp) of 10 flukes yielded 2 genotypes, Navsari isolate 1 and 2. In BLAST analysis, ITS-2+ genotypes were 97.3–99% similar with published sequences (KF564870, JF834888, KF642983 and JX678254) of P. epiclitum of Paramphistomatidae. Two genotypes depicted 4 single nucleotide polymorphisms (NPs) in the form of transitions (C-T at 10 and 18; G-A at 255; A-G at 367 locus), 1 triple NPs (CGT-GAA between 21–23 loci) and missing A base at codon 40 in the genotype 1. Average AT and GC content was 49.61% and 50.38%, respectively. Trees topology inferred by Neighbor Joining and Maximum Likelihood methods of ITS2+ of trematodes were similar, with small difference of bootstrap values. Navsari genotypes formed a tight cluster with the P. epiclitum, originated from different location with high bootstrap value and 0.004–0.011 estimated evolutionary divergence.

Keywords: Morphology; molecular; ITS2+; Paramphistomum epiclitum; small ruminants

References

  • Adlard R.D., Barker S.C., Blair D., Cribb T.H. 1993. Comparison of the second internal transcribed spacer (ribosomal DNA) from populations and species of Fasciolidae (Digenea). International Journal of Parasitology, 23, 423–425. https://doi.org/10.1016/0020-7519(93)90022-QCrossref

  • Agatsuma T., Arakawa Y., Iwagami M., Honzako Y., Cahyaningsih U., Kang S.Y., Hong S.J. 2000. Molecular evidence of natural hybridization between Fasciola hepatica and F. gigantica. Parasitology International, 49, 231–238. https://doi.org/10.1016/S1383-5769(00)00051-9Crossref

  • Akkari, H., Jebali, J., Gharbi, M., Mhadhbi, M., Awadi, S. and Darghouth, M.A. 2013. Epidemiological study of sympatric Haemonchus species and genetic characterization of Haemonchus contortus in domestic ruminants in Tunisia. Veterinary Parasitology, 193, 118–125. https://doi.org/10.1016/j.vetpar.2012.12.014PubMedCrossrefWeb of Science

  • Amundson C.L., Traub N.J., Smith-Herron A.J., Flint, P.L. 2016. Helminth community structure in two species of arctic-breeding waterfowl. International Journal for Parasitology: Parasites and Wildlife, 5, 263–272. http://dx.doi.org/10.1016/j.ijppaw.2016.09.002Web of SciencePubMed

  • Cauquil L., Hüe T., Hurlin J.C., Mitchell G., Searle K., Skuce, P., Zadoks, R. 2016. Prevalence and sequence-based identity of rumen fluke in cattle and deer in New Caledonia. PLoS ONE, 11. e0152603. CrossrefWeb of SciencePubMedGoogle Scholar

  • Chamuah J.K., Raina O.K., Lalrinkima H., Jacob S.S., Sankar M., Sakhrie A., Lama S., Banerjee, P.S. 2016. Molecular characterization of veterinary important trematode and cestode species in the mithun Bos frontalis from northeast India. Journal of Helminthology, 90, 577–582. https://doi.org/10.1017/S0022149X15000772Crossref

  • Chauhan V.D., Patel P.V., Hasnani J.J., Pandya S.S., Pandey S., Pansuriya D.V., Choudhary, V. 2015. Study on hematological alterations induced by amphistomosis in buffaloes. Veterinary World, 8, 417–420. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Cheruiyot, H.K., Wamae, L.W. 1988. Incidence of bovine paramphistomiasis in Kenya. Bulletin of Animal Health and Production in Africa, 36, 55–57Google Scholar

  • Choudhary V., Hasnani J.J., Khyalia M.K., Pandey S., Chauhan V.D., Pandya S.S., Patel P.V. 201p5. Morphological and histological identification of Paramphistomum cervi (Trematoda: Paramiphistoma) in rumen of infected sheep. Veterinary World, 8, 125–129. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Christensen C.M., Zarlenga D.S., Gasbarre, L.C. 1994. Ostertagia, Haemonchus, Cooperia and Oesophagostomum: Construction and characterization of genus-specific DNA probes to differentiate important parasites of cattle. Experimental Parasitology, 78, 93–100. https://doi.org/10.1006/expr.1994.1009PubMedCrossref

  • Dinnik J.A. 1964. Intestinal paramphistomiasis and Paramphistomum microbothrium Fischoeder in Africa. Bulletin of epizootic diseases of Africa, 12, 439–454Google Scholar

  • Dube S., Sibula M.S., Dhlamini, Z. 2016. Molecular analysis of selected paramphistome isolates from cattle in southern Africa. Journal of Helminthology, 90, 784–788. CrossrefPubMedGoogle Scholar

  • Duneau D., Ebert, D. 2012. Host sexual dimorphism and parasite adaptation. PLoS Biology, 10, e1001271. CrossrefWeb of SciencePubMedGoogle Scholar

  • Dutt S.C. 1980. Paramphistomes and paramphistomiasis in domestic ruminants in India. Edited by A. Singh. Ludhiana: PAU Press, Punjab Agricultural UniversityGoogle Scholar

  • Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791. CrossrefPubMedGoogle Scholar

  • Ghatani S., Shylla J.A., Tandon V., Chatterjee A., Roy B. 2012. Molecular characterization of pouched amphistome parasites (Trematoda: Gastrothylacidae) using ribosomal ITS2 sequence and secondary structures. Journal of Helminthology, 86, 117–124. CrossrefWeb of SciencePubMedGoogle Scholar

  • Gupta B.C., Parshad V.R., Guraya, S.S. 1984. Maturation of Paramphistomum cervi in sheep in India. Veterinary Parasitology, 15, 239–245. CrossrefPubMedGoogle Scholar

  • Gupta B.C., Parshad V.R., Guraya, S.S. 1987. Morphological and histochemical observations on the vitelline cells of developing and adult Paramphistomum cervi (Trematoda: Digenea). Journal of Helminthology, 61, 297–305. https://doi.org/10.1017/S0022149X00010208PubMedCrossref

  • Hillis D.M., Dixon M.T. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology, 66, 411–453.CrossrefGoogle Scholar

  • Hoste H., Torres-Acosta J.F., Aguilar-Caballero A.J. 2008. Nutrition parasite interactions in goats: is immunoregulation involved in the control of gastrointestinal nematodes? Parasite Immunology, 30, 79–88. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Ichikawa M., Kondoh D., Bawn S., Maw N.N., Htun L.L., Thein M., et al. 2013. Morphological and molecular characterization of Explanatum explanatum from cattle and buffaloes in Myanmar. Journal of Veterinary Medical Science, 75, 309–314. https://doi.org/10.1292/jvms.12-0389CrossrefWeb of Science

  • Itagaki T., Tsumagari N., Tsutsumi K., Chinone S. 2003. Discrimination of three amphistome species by PCR-RFLP based on rDNA ITS2 markers. Journal of Veterinary Medical Science, 65, 931–933. CrossrefGoogle Scholar

  • Jones A, Bray R.A., Gibson D.I. 2005. Keys to the Trematoda. Vol. 2. Wallingford: CAB International, pp. 745Google Scholar

  • Lotfy W.M., Brant S.V., Ashmawy K.I., Devkota R., Mkoji G.M., Loker, E.S. 2010. A molecular approach for identification of paramphistomes from Africa and Asia. Veterinary Parasitology, 174, 234–240. CrossrefWeb of SciencePubMedGoogle Scholar

  • Ma J., He J.J., Liu G.H., Zhou D.H., Liu J.Z., Liu Y., Zhu X.Q. 2015. Mitochondrial and nuclear ribosomal DNA dataset supports that Paramphistomum leydeni (Trematoda: Digenea) is a distinct rumen fluke species. Parasites and Vectors, 201. CrossrefGoogle Scholar

  • Mage C., Bourgne H., Toullieu J.M., Rondelaud D., Dreyfuss G. 2002. Fasciola hepatica and Paramphistomum daubneyi: changes in prevalences of natural infections in cattle and in Lymnaea truncatula from central France over the past 12 years. Veterinary Research, 33, 439–447. https://doi.org/10.1051/vetres:2002030PubMedCrossref

  • Maitra A., Yadav C.L., Sanjukta, R.K. 2014. Seasonal prevalence of paramphistomosis in domestic ruminants in different agro-climatic zones of Uttarakhand, India. Asian Pacific Journal of Tropical Disease, 4 (Suppl 2), S748–S753. https://doi.org/10.1016/S2222-1808(14)60720-9

  • Mangkit, B., Thaenkham, U., Adisakwattana, P., Watthanakulpanich, D., Jantasuriyarat, C., Komalamisra, C. 2014. Molecular characterization of Haemonchus contortus (Nematoda: Trichostrongylidae) from small ruminants in Thailand based on the second internal transcribed spacer of ribosomal DNA. Kasetsart Journal-Natural Science, 48, 740–758.Google Scholar

  • Mattison R.G., Hanna R.E.B., Nizami, W.A. 1992. Ultrastructure and histochemistry of the digestive tract of juvenile Paramphistomum epiclitum (paramphistomidae: digenea) during migration in Indian ruminants. International Journal for Parasitology, 22, 1089–1101. https://doi.org/10.1016/0020-7519(92)90029-KPubMedCrossref

  • O’Toole A., Browne J.A., Hogan S., Bassière T., DeWaal T., Mulcahy G., Zintl A. 2014. Identity of rumen fluke in deer. Parasitology Research, 113, 4097–4103. CrossrefWeb of SciencePubMedGoogle Scholar

  • Pearson J.C. 1992. On the position of the digenean family Heronimidae: an inquiry into a cladistic classification of the Digenea. Systematic Parasitology, 21, 81–166. CrossrefGoogle Scholar

  • Rinaldi L., Perugini, A.G., Capuano F., Fenizia D., Musella V., Veneziano V., Cringoli G. 2005. Characterization of the second internal transcribed spacer of ribosomal DNA of Calicophoron daubneyi from various hosts and locations in southern Italy. Veterinary Parasitology, 131, 247–253. CrossrefPubMedGoogle Scholar

  • Saitou N., Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 24, 189–204. CrossrefGoogle Scholar

  • Salib F.A., Halium M. M. A., Mousa, W. and Massieh E.S.A. 2015. Evaluation of indirect ELISA and western blotting for the diagnosis of amphistomes infection in cattle and buffaloes. International Journal of Livestock Research, 5, 71–81. CrossrefGoogle Scholar

  • Sanabria R., Moré G., Romero J. 2011. Molecular characterization of the ITS-2 fragment of Paramphistomum leydeni (Trematoda: Paramphistomidae). Veterinary Parasitology, 177, 182–185. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Sanabria R.E.F., Romero, J.R. 2008. Review and update of paramphistomosis. Helminthologia, 45(2), 64–68. https://doi.org/10.2478/s11687-008-0012-5Web of Science

  • Sey O. 2005. Keys to the identification of the taxa of the amphistomes (Trematoda, Amphistomida). Veszprém, Pécs: Regional Centre of the Hungarian Academy of Sciences (MTA VEAB), University of Pécs, 2005. pp. 120, ISBN 963 7385 762Google Scholar

  • Singh C.D.N., Lakra, P. 1971. Pathologic changes in naturally occurring Cotylophoron cotylophorum infection in cattle. American Journal of Veterinary Research, 32, 659–663PubMedGoogle Scholar

  • Singh N.K., Singh H., Jyoti Haque M., Rath, S.S. 2012. Prevalence of parasitic infections in cattle of Ludhiana district, Punjab. Journal of Parasitic Diseases, 36, 256–259. CrossrefGoogle Scholar

  • Soulsby E.J.L. 1982. Helminths, Arthropods and Protozoa of Domesticated Animals (7th Edn). In: (Ed.) ELBS Bailliere, Tindall London, pp. 809Google Scholar

  • Strain S.A.J., Stear, M.J. 2001. The influence of protein supplementation on the immune response to Haemonchus contortus. Parasite Immunology, 23, 527–531. https://doi.org/10.1046/j.1365-3024.2001.00410.xPubMedCrossref

  • Swarnakar G., Kumawat A., Sanger B., Roat K., Goswami, H. 2014. Prevalence of amphistome parasites (Trematoda: Digenea) in Udaipur of southern Rajasthan, India. International Journal of Current Microbiology and Applied Sciences, 3, 32–37Google Scholar

  • Tamura K., Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526. CrossrefPubMedGoogle Scholar

  • Tamura K., Nei M., Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA), 101, 11030–11035. CrossrefGoogle Scholar

  • Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. CrossrefWeb of SciencePubMedGoogle Scholar

  • Terefe G., Yacob H.T., Grisez C., Prevot F., Du-Mas E., Bergeaud J.P., et al. 2005. Haemonchus contortus egg excretion and female length reduction in sheep previously infected with Oestrus ovis (Diptera: Oestridae) larvae. Veterinary Parasitology, 128, 271–283. CrossrefPubMedGoogle Scholar

  • Yamaguti, S. 1971. Synopsis of digenetic trematodes of vertebrates. Vol. I and II. Japan Keigaku Publishing Co. pp.1074Google Scholar

  • Yin, F., Gasser, R.B., Li, F., Bao, M., Huang, W., Zou, F., et al. 2013. Genetic variability within and among Haemonchus contortus isolates from goats and sheep in China. Parasites and Vectors, 6, 279. CrossrefGoogle Scholar

  • Zheng X., Chang Q.C., Zhang Y., Tian S.Q., Lou Y., Duan H., et al. 2014. Characterization of the complete nuclear ribosomal DNA sequences of Paramphistomum cervi. The Scientific World Journal, 1–11. http://dx.doi.org/10.1155/2014/751907

About the article

Received: 2017-08-18

Revised: 2018-04-30

Accepted: 2018-04-02

Published Online: 2018-07-04

Published in Print: 2018-09-25


Conflict of interest: Authors declare no conflict of interest of any sort with anyone.


Citation Information: Acta Parasitologica, Volume 63, Issue 3, Pages 586–594, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0067.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in