Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

More options …
Volume 63, Issue 3


Does apicortin, a characteristic protein of apicomplexan parasites and placozoa, occur in Eumetazoa?

Ferenc Orosz
  • Corresponding author
  • Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-04 | DOI: https://doi.org/10.1515/ap-2018-0071


Apicortin is a characteristic protein of apicomplexan parasites which has recently been identified in their free-living cousins, chromerids as well. The placozoan Trichoplax adhaerens is the only animal possessing this protein and apicortin is one of its most abundant proteins. The recently published transcriptome of the cnidarian Porites astreoides contains an apicortin-like sequence. Other cnidarians do not have it, thus it is its first occurrence not only in this phylum but also in Eumetazoa. However, its translated amino acid sequence is more similar to apicomplexan apicortins than to that of T. adhaerens, the GC ratio is much higher than either the genome-wide GC ratio of P. astreoides or that of the placozoan apicortin gene, and phylogenetic analyses suggest that this apicortin has an apicomplexan origin. Although these data might be indicative for a horizontal gene transfer event, we should be cautious to state it; it is more probable that it is a contamination from a gregarine, a marine Apicomplexa. Thus T. adhaerens remains the only animal where the presence of apicortin is proved.

Keywords: Apicomplexa; Chromerida; Cnidaria; p25alpha domain; genetic contamination; horizontal gene transfer


  • Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 253, 3389–3402Google Scholar

  • Aurrecoechea C., Barreto A., Basenko E.Y., Brestelli J., Brunk B.P., Cade S., et al. 2017. EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Research, 45, D581–D591. CrossrefGoogle Scholar

  • Barta J.R., Thompson R.C. 2006. What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends in Parasitology, 22, 463–468. CrossrefPubMedGoogle Scholar

  • Borner J., Burmester T. 2017. Parasite infection of public databases, a data mining approach to identify apicomplexan contaminations in animal genome and transcriptome assemblies. BMC Genomics, 18, 100. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Felsenstein J. 2008. PHYLIP Phylogeny Inference Package. version 3.696, Department of Genome Sciences and Department of Biology University of Washington Seattle WA http://evolution.genetics.washington.edu/phylip.html

  • Hlavanda E., Kovács J., Oláh J., Orosz F., Medzihradszky K.F., Ovádi J. 2002. Brain-specific p25 protein binds to tubulin and microtubules and induces aberrant microtubule assemblies at substoichiometric concentrations. Biochemistry, 41, 8657–8664CrossrefPubMedGoogle Scholar

  • Janouškovec J., Horák A., Oborník M., Lukeš J., Keeling P.J. 2010. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proceedings of the National Academy of Sciences of the United States of America, 107, 10949–10954. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Jones D.T., Taylor W.R., Thornton J.M. 1992. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences, 8, 275–282.Google Scholar

  • Kumar S., Jones M., Koutsovoulos G., Clarke M., Blaxter M. 2013. Blobology: exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots. Frontiers in Genetics, 4, 237. CrossrefPubMedGoogle Scholar

  • Leander B.S. Marine gregarines: evolutionary prelude to the apicomplexan radiation? 2008. Trends in Parasitology, 24, 60–67. CrossrefWeb of SciencePubMedGoogle Scholar

  • Logan-Klumpler F.J., De Silva N., Boehme U., Rogers M.B., Velarde G., McQuillan J.A., et al. 2012. GeneDB – an annotation database for pathogens. Nucleic Acids Research. 40, D98–108. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Lopes R.J., Mérida A.M., Carneiro M. 2017. Unleashing the potential of public genomic resources to find parasite genetic data. Trends in Parasitology, 33, 750–753. CrossrefWeb of SciencePubMedGoogle Scholar

  • Mansour T.A., Rosenthal J.J., Brown C.T., Roberson L.M. 2016. Transcriptome of the Caribbean stony coral Porites astreoides from three developmental stages. GigaScience, 5, 33. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Merchant S., Wood D.E., Salzberg S.L. 2014. Unexpected crossspecies contamination in genome sequencing projects. Peer-Journal, 2, e675. CrossrefGoogle Scholar

  • Misof B., Liu S., Meusemann K., Peters R.S., Donath A., Mayer C., et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science, 346, 763–767. CrossrefWeb of SciencePubMedGoogle Scholar

  • Moore R.B., Oborník M., Janouskovec J., Chrudimský T., Vancová M., Green D.H., et al. 2008. A photosynthetic alveolate closely related to apicomplexan parasites. Nature, 451, 959–963. CrossrefWeb of SciencePubMedGoogle Scholar

  • Nagayasu E., Hwang Y.C., Liu J., Murray J.M., Hu K. 2017. Loss of a doublecortin (DCX)-domain protein causes structural defects in a tubulin-based organelle of Toxoplasma gondii and impairs host-cell invasion. Molecular Biology of the Cell, 28, 411–428. CrossrefWeb of ScienceGoogle Scholar

  • Oborník M., Modrý D., Lukeš M., Cernotíková-Stříbrná E., Cihlář J., Tesařová M., et al. 2012. Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist, 163, 306–323. CrossrefWeb of SciencePubMedGoogle Scholar

  • Oláh J., Szénási T., Szabó A., Kovács K., Lőw P., Štifanić M., et al. 2017. Tubulin binding and polymerization promoting properties of TPPP proteins are evolutionarily conserved. Biochemistry, 56, 1017–1024. CrossrefPubMedGoogle Scholar

  • Orosz F. 2009. Apicortin, a unique protein, with a putative cytoskeletal role, shared only by apicomplexan parasites and the placozoan Trichoplax adhaerens. Infection, Genetics and Evolution, 9, 1275–1286. CrossrefWeb of ScienceGoogle Scholar

  • Orosz F. 2011. Apicomplexan apicortins possess a long disordered N-terminal extension. Infection, Genetics and Evolution, 11, 1037–1044. CrossrefWeb of ScienceGoogle Scholar

  • Orosz F. 2012. A new protein superfamily: TPPP-like proteins. PLoS One, 7, e49276. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Orosz F. 2015. Two recently sequenced vertebrate genomes are contaminated with apicomplexan species of the Sarcocystidae family. International Journal of Parasitology, 45, 871–878. CrossrefWeb of ScienceGoogle Scholar

  • Orosz F. 2016. Wider than thought phylogenetic occurrence of apicortin, a characteristic protein of apicomplexan parasites. Journal of Molecular Evolution, 82, 303–314. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Orosz F. 2017. On the benefit of publishing uncurated genome assembly data. Journal of Bacteriology and Parasitology, 2017, 8, 317. CrossrefGoogle Scholar

  • Ringrose J.H., van den Toorn H.W., Eitel M., Post H., Neerincx P., Schierwater B., et al. 2013. Deep proteome profiling of Trichoplax adhaerens reveals remarkable features at the origin of metazoan multicellularity. Nature Communications, 4, 1408. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Ronquist F., Huelsenbeck J.P.. 2003. MrBayes 3, Bayesian phylogenetic inference under mixture models. Bioinformatics, 19, 1572–1574CrossrefGoogle Scholar

  • Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., et al. 2011. Fast scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539. CrossrefWeb of SciencePubMedGoogle Scholar

  • Shinzato C., Inoue M., Kusakabe M. 2014. A snapshot of a coral “holobiont”: a transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae. PLoS One, 9, e85182. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Shoguchi E., Shinzato C., Kawashima T., Gyoja F., Mungpakdee S., Koyanagi R., et al. 2013. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Current Biology, 23, 1399–1408. CrossrefWeb of ScienceGoogle Scholar

  • Tavare S.. 1986. Some probabilistic and statistical problems on the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86Google Scholar

  • Templeton T.J., Enomoto S., Chen W.J., Huang C.G., Lancto C.A., Abrahamsen M.S., et al. 2010. A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a Gregarine and Cryptosporidium. Molecular Biology and Evolution, 27, 235–248. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Vincze O., Tőkési N., Oláh J., Hlavanda E., Zotter A., Horváth I., et al. 2006. Tubulin polymerization promoting proteins (TPPPs): members of a new family with distinct structures and functions. Biochemistry, 45, 13818–13826. CrossrefPubMedGoogle Scholar

  • Whelan S., Goldman N. 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular Biology and Evolution, 18, 691-699PubMedCrossrefGoogle Scholar

About the article

Received: 2017-10-23

Revised: 2018-04-26

Accepted: 2018-05-08

Published Online: 2018-07-04

Published in Print: 2018-09-25

Citation Information: Acta Parasitologica, Volume 63, Issue 3, Pages 617–633, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0071.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in