Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 63, Issue 3

Issues

Comparison of sensitivity of two primer sets for the detection of Toxoplasma gondii DNA in wildlife

Aleksandra Kornacka / Aleksandra Cybulska / Bożena Moskwa
Published Online: 2018-07-04 | DOI: https://doi.org/10.1515/ap-2018-0072

Abstract

Toxoplasma gondii, a coccidian parasite known to infect almost all warm-blooded animals, is the cause of one of the most common zoonotic parasitic diseases. The aim of the study is to determine whether the 529 bp fragment or the TGR1E gene is more useful target for PCR identification of T. gondii, for common use. The brains of 221 carnivores and omnivores collected between 2013 and 2015 from north-eastern Poland were examined for the presence of this parasite. The DNA was extracted and then amplified using specific primers. Positive results were obtained in 24% of brain samples using the TGR1E target and 19% using the 529 bp sequence. The results demonstrate that both TGR1E and 529 bp repeat element are suitable for detecting T. gondii DNA in wildlife animals, and the combination of two methods is necessary to obtain reliable results.

Keywords: PCR; TGR1E gene; 529 bp sequence; Toxoplasma gondii; carnivores

References

  • Belaz S., Gangneux J.P., Dupretz P., Guiguen C., Gangneuxa F.R. 2015. A 10-year retrospective comparison of two target sequences, REP-529 and B1, for Toxoplasma gondii detection by quantitative PCR. Journal of Clinical Microbiology, 53, 1294–1300. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Burg J.L., Grover C.M., Pouletty P., Boothroyd J.C. 1989. Direct and sensitive detection of a pathogenic protozoan Toxoplasma gondii, by polymerase chain reaction. Journal of Clinical Microbiology, 27, 1787–1792PubMedGoogle Scholar

  • Burrells A., Bartley P.M., Zimmer I.A., Roy S., Kitchener A.C., Meredith A., et al. 2013. Evidence of the three main clonal Toxoplasma gondii lineages from wild mammalian carnivores in the UK. Parasitology, 140, 1768-1776. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Cermáková Z., Ryšková O., Plšsková L. 2005. Polymerase chain reaction for detection of Toxoplasma gondii in human biological samples. Folia Microbiologica, 50, 341–344CrossrefPubMedGoogle Scholar

  • Cicchetti D.V., Feinstein A.R. 1990. High agreement but low kappa: II. Resolving the paradoxes. Journal of Clinical Epidemiology, 43, 551–558CrossrefPubMedGoogle Scholar

  • De Craeye S., Speybroeck N., Ajzenberg D., Dardé M.L., Collinet F., Tavernier P., et al. 2011. Toxoplasma gondii and Neospora caninum in wildlife: common parasites in Belgian foxes and Cervidae? Veterinary Parasitology, 178, 64–69. CrossrefPubMedWeb of ScienceGoogle Scholar

  • De Oliveira Mendonça A., Domingues P.F., Da Silva A.V., Bergamaschi Pezerico S., Langoni H. 2004. Detection of Toxoplasma gondii in swine sausages. Parasitologia Latinoamerica, 59, 42–45. CrossrefGoogle Scholar

  • Dubey J. P. 1988. Long-term persistence of Toxoplasma gondii in tissues of pigs inoculated with T. gondii oocysts and effect of freezing on viability of tissue cysts in pork. American Journal of Veterinary Research, 49, 910–913Google Scholar

  • Dubey J. P., Lindsay D. S., Speer C.A. 1998. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical Microbiology Reviews, 11, 267–299PubMedGoogle Scholar

  • Edvinsson B., Lappalainen M., Evengard B. 2006. Real-time PCR targeting a 529 bp repeat element for diagnosis of toxoplasmosis. Clinical Microbiology and Infection, 12, 131–136. CrossrefGoogle Scholar

  • Franzen C., Altfeld M., Hegener P., Hartmann P., Arendt G., Jablonowski H., et al. 1997. Limited value of PCR for detection of Toxoplasma gondii in blood from human immunodeficiency virus-infected patients. Journal of Clinical Microbiology, 35, 2639–2641PubMedGoogle Scholar

  • Herrmann D.C., Maksimov P., Maksimov A., Sutor A., Schwarz S., Jaschke W., et al. 2012. Toxoplasma gondii in foxes and rodents from the German Federal States of Brandenburg and Saxony-Anhalt: seroprevalence and genotypes. Veterinary Parasitology, 185, 78–85. CrossrefWeb of SciencePubMedGoogle Scholar

  • Hill D., Dubey J.P. 2002. Toxoplasma gondii: transmission, diagnosis and prevention. Clinical Microbiology and Infection, 8, 634–640CrossrefGoogle Scholar

  • Homan W.L., Vercammen M., De Braekeleer J., Verschueren H. 2000. Identification of a 200-to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. International Journal for Parasitology, 30, 69–75CrossrefPubMedGoogle Scholar

  • Hůrková L., Modrý D. 2006. PCR detection of Neospora caninum, Toxoplasma gondii and Encephalitozoon cuniculi in brains of wild carnivores. Veterinary Parasitology, 137, 150–154. CrossrefPubMedGoogle Scholar

  • Ivovic V., Vujanic M., Zivkovic T., Klun I., Djurkovic-Djakovic O. 2012. Molecular detection and genotyping of Toxoplasma gondii from clinical samples. In: (Eds. Djurkovic-Djakovic O) Toxoplasmosis – Recent Advances. InTech. CrossrefGoogle Scholar

  • Juránková J., BassoW., Neumayerová H., Baláž V., Jánová E., Sidler X., et al. 2014. Brain is the predilection site of Toxoplasma gondii in experimentally inoculated pigs as revealed by magnetic capture and real-time PCR. Food Microbiology, 38, 167–170. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Juránková J., Opsteegh M., Neumayerová H., Kovařčik K., Frencová A., Baláž V., et al. 2013. Quantification of Toxoplasma gondii mentally infected goats by magnetic capture and realtime PCR. Veterinary Parasitology, 193, 95–99. CrossrefGoogle Scholar

  • Kornacka A., Cybulska A., Bień J., Goździk K., Moskwa B. 2016. The usefulness of direct agglutination test, enzyme-linked immunosorbent assay and polymerase chain reaction for the detection of Toxoplasma gondii in wild animals. Veterinary Parasitology, 228, 85–89. CrossrefWeb of SciencePubMedGoogle Scholar

  • Lamoril J., Molina J.M., deGouvello A., Garin Y.J., Deybach J.C., Modai J., Derouin F. 1996. Detection by PCR of Toxoplasma gondii in blood in the diagnosis of cerebral toxoplasmosis in patients with AIDS. Journal of Clinical Pathology, 49, 89–92CrossrefGoogle Scholar

  • Luptakova L., Petrovova E., Mazensky D., Valencakova A., BalentP. 2012. Toxoplasmosis in livestock and pet animals in Slovakia. In: (Eds. Djurkovic-Djakovic O) Toxoplasmosis – Recent Advances, InTech. 2012. CrossrefGoogle Scholar

  • Noral M.Y., Dogruman-Al F., Engin E.D., Kustimur S., Babur C., Poyraz A. 2009. The comparison of polymerase chain reaction directed to the 529 bp gene and the B1 gene in the detection of experimental mouse toxoplasmosis. Turkiye Klinikleri Journal of Medical Sciences, 29, 48–56Google Scholar

  • Opsteegh M., Langelaar M., Sprong H., den Hartog L., De Craeye S., Bokken G., et al. 2010. Direct detection and genotyping of Toxoplasma gondii in meat samples using magnetic capture and PCR. International Journal of Food Microbiology, 139, 193–201. CrossrefWeb of SciencePubMedGoogle Scholar

  • Paugam A., Dupouy-Camet J., Sumuyen M.H., Romand S., Lamoril J., Derouin F. 1995. Detection of Toxoplasma gondii parasitemia by polymerase chain reaction in perorally infected mice. Parasitology, 2, 181–184. CrossrefGoogle Scholar

  • Piña-Vázquez C., Saavedra R., Hérion P. 2008. A quantitative competitive PCR method to determine the parasite load in the brain of Toxoplasma gondii-infected mice. Parasitology International, 57, 347–353. CrossrefWeb of SciencePubMedGoogle Scholar

  • Reischl U., Bretagne S., Krüger D., Ernault P., Costa J.M. 2003. Comparison of two DNA targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. Bio Med Central Infectious Diseases, 3,7. CrossrefGoogle Scholar

  • Rożej-Bielicka W., Waloch M.E., Goląb E. 2011. Cases of Toxoplasma gondii infection in foetus is and toxoplasmic encephalitis in immunosupressed patients confirmed by PCR method in NIPH-NIH 2009-2010. Przegląd Epidemiologiczny, 65, 593–597Google Scholar

  • Sedlák K., Bártová E., Literák I., Vodička R., Dubey J.P. 2004. Toxoplasmosis in nilgais (Boselaphus tragocamelus) and a saiga antelope (Saiga tatarica). Journal of Zoo and Wildlife Medicine, 35, 530–533. CrossrefGoogle Scholar

  • Spišák F., Turčeková L., Reiterova K., Špilovská S., Dubinský P. 2010. Prevalence estimation and genotypization of Toxoplasma gondii in goats. Biologia, 65, 670–674. CrossrefWeb of ScienceGoogle Scholar

  • Şuteu O., MihalcaA.D., Paştiu A.I., Györke A., Matei I.A., Ionică A., et al. 2014. Red Foxes (Vulpes vulpes) in Romania are carriers of Toxoplasma gondii but not Neospora caninum. Journal of Wildlife Diseases, 50, 713–716. CrossrefPubMedWeb of ScienceGoogle Scholar

  • Veronesi F., Santoro A., Milardi G. L., Diaferia M., Branciari R., Miraglia D., et al. 2017. Comparison of PCR assays targeting the multi-copy targets B1 gene and 529 bp repetitive element for detection of Toxoplasma gondii in swine muscle. Food Microbiology, 63, 213–216. CrossrefWeb of SciencePubMedGoogle Scholar

  • Viera A.J., Garrett J.M. 2005. Understanding interobserver agreement: the kappa statistic. Family Medicine, 37, 360–363PubMedGoogle Scholar

  • Warnekulasuriya M.R., Johnson J.D., Holliman R.E. 1998. Detection of Toxoplasma gondii in cured meats. International Journal of Food Microbiology, 4, 211–215. CrossrefGoogle Scholar

  • Yang W., Lindquist H.D.A., Cama V., Schaefer F.W., Villegas E., Fayer R., et al. 2009. Detection of Toxoplasma gondii oocysts in water sample concentrates by Real-Time PCR. Applied and Environmental Microbiology, 75, 3477–3483. CrossrefWeb of SciencePubMedGoogle Scholar

About the article

Received: 2018-03-13

Revised: 2018-05-18

Accepted: 2018-05-21

Published Online: 2018-07-04

Published in Print: 2018-09-25


Authors’ contributions: AK and BM were involved in the design and coordination of the study. AC helped performed laboratory tests. All authors contributed in drafting the manuscript. All authors read and approved the final manuscript.

Availability of data and materials: All data generated or analyzed during this study are included in this published article.

Competing interests: The authors declare that they have no competing interests.

Ethics approval: The experiment was approved by the Review of Board of Ethics and conducted in accordance with the guidelines establish by Bioethics Appeals Commission (no 72/2013)

Funding: The authors received no financial support for the research, authorship, and publication of this article.


Citation Information: Acta Parasitologica, Volume 63, Issue 3, Pages 634–639, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0072.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Aleksandra Kornacka, Aleksandra Cybulska, Marcin Popiołek, and Bożena Moskwa
Veterinary Parasitology, 2018

Comments (0)

Please log in or register to comment.
Log in