Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 63, Issue 4

Issues

Evaluation and correlation of oxidative stress and haemato-biochemical observations in horses with natural patent and latent trypanosomosis in Punjab state of India

Rahul Parashar
  • Corresponding author
  • Department of Veterinary Parasitology, College of Veterinary Science, Guru Angad Dev Veterinary & Animal Sciences University, Firozpur Road, Near Verka Milk Plant, Ludhiana, Punjab 141004, India;
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lachhman Das Singla
  • Department of Veterinary Parasitology, College of Veterinary Science, Guru Angad Dev Veterinary & Animal Sciences University, Firozpur Road, Near Verka Milk Plant, Ludhiana, Punjab 141004, India;
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mayank Gupta
  • Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science, Guru Angad Dev Veterinary & Animal Sciences University, Firozpur Road, Near Verka Milk Plant, Ludhiana, Punjab 141004, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Suresh Kumar Sharma
  • Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science, Guru Angad Dev Veterinary & Animal Sciences University, Firozpur Road, Near Verka Milk Plant, Ludhiana, Punjab 141004, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-18 | DOI: https://doi.org/10.1515/ap-2018-0087

Abstract

The haemato-biochemical indices and oxidative stress markers in horses naturally infected with Trypanosoma evansi were evaluated by analyzing the level of these parameters between T. evansi infected (microscopically positive patent group and PCR positive latent group) and infection free horses. To compare the hemato-biochemical indices and oxidative stress indicators, horses were divided into three categories based on diagnostic test employed and positive results obtained. These included Romanowsky stained slide positive group (Group I; n = 6), PCR positive group (group II; n = 28) and negative control group (group III, n = 30), revealing parasitologically positive patent, molecular positive latent and disease free status of horses. A significant reductions in total erythrocytes count (TEC, P = 0.01), haemoglobin (Hb, P = 0.01) and packed cell volume (PCV, P = 0.04) was noticed both in group I and group II while significant neutrophilia and lymphocytopenia was observed in group I when compared to negative control group. Substantial increase in creatinine (CRTN, P = 0.032) and gamma glutamyl transferase (GGT, P = 0.012) in group I while significant decrease in glucose (GLU, P = 0.04) and iron (Fe, P = 0.01) were noticed in both group I and group II in comparison to group III. A significant difference in lipid peroxides (LPO, P = 0.01) with highest level in patent group I (15.33 ± 0.53) followed by PCR positive latent group (14.09 ± 1.66) indicates higher lipid peroxidation in erythrocytes and oxidative stress in decreasing order when compared with infection free control horses (9.83 ± 0.97). Catalase (CAT, P = 0.01) was significantly lower in parasitological (0.82 ± 0.14) and molecular positive cases (1.27 ± 0.35) in comparison to control group (3.43 ± 0.96). The levels of superoxide dismutase (SOD, P = 0.01), reduced glutathione (GSH, P = 0.01) and ferric reducing antioxidant power (FRAP, P = 0.01) were significantly lower in parasito-molecular positive cases as compared to infection free control horses. An inverse correlation of RBC count with LPO and GSH and a direct correlation with catalase, SOD and FRAP was revealed. Overall, the observed substantial decreases in the oxidative parameters like catalase CAT, SOD, GSH and FRAP activities with remarkably elevated levels of LPO indicate high exposure of erythrocytes to oxidative damage in T.evansi infected horses.

Keywords: Horses; haemato-biochemical parameters; latent; Oxidative stress parameters; patent; Trypanosoma evansi; trypanosomosis, India

References

  • Abd El-Baky A. A., Salem S.I. 2011. Clinicopathological and cytological studies on naturally infected camels and experimentally infected rats with Trypanosoma evansi. World Applied Sciences Journal, 14, 42–50Google Scholar

  • Abenga J.N., Anosa V.O. 2007. Serum biochemical changes in experimental gambian trypanosomosis. II. Assessing hepatic and renal dysfunction. Turkish Journal of Veterinary and Animal sciences, 31, 293–296Google Scholar

  • Adejinmi J.O., Akinboade O.A. 2000. Serum biochemical changes in WAD goats with experimental mixed Trypanosoma brucei and Cowdria ruminantum infections. Tropical Veterinarian, 18, 111–120Google Scholar

  • Aebi H.E. 1983. Catalase. In: Bergmeyer, H.U., Ed., Methods of enzymatic analysis, Verlag Chemie, Weinhem. 273–286. CrossrefGoogle Scholar

  • Akanji M.A., Adeyemi O.S., Oguntoye S.O., Suleiman F. 2009. Psidium guavaja extract reduces trypanosomosis associated lipid peroxidation and raised glutathione concentrations in infected animals. Excli Journal, 8,148–154Google Scholar

  • Amanvermez R., Celik C. 2004. Superoxide dismutase, glutathione, vitamin C, total antioxidant and total thiol levels in hydatid cysts. Turkiye Klinikleri Journal of Medical Sciences, 24, pp. 2 13Google Scholar

  • Anosa V.O. 1988. Haematological and biochemical changes in human and animal trypanosomosis. Part I. Revue d’élevage et de Médecine Vétérinaire des pays Tropicaux, 41, 65–78Google Scholar

  • Auten R.L., Davis J.M. 2009. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatric Research, 66, 121–127. CrossrefGoogle Scholar

  • Bal M.S., Sharma A., Ashuma Bath B.K., Kaur P., Singla L.D. 2014. Detection and management of latent infection of Trypanosoma evansi in a cattle herd. Indian Journal of Animal Research, 48, 31–37. CrossrefGoogle Scholar

  • Benzie I.F.F., Strain J.J. 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27. CrossrefGoogle Scholar

  • Brun R., Hecker H., Lun Z., 1998. Trypanosoma evansi and T. equiperdum: distribution, biology, treatment and phylogenetic relationship. Veterinary Parasitology, 79, 95–107. CrossrefGoogle Scholar

  • Bulger E.M., Maier R.V. 2001. Antioxidants in critical illness. Archives of Surgery, 136, 1201–1207. CrossrefGoogle Scholar

  • Cadioli F.A., Marques L.C., Machado R.Z., Alessi A.C., Aquino L.P.C.T., Barnabé P.A. 2006. Experimental Trypanosoma evansi infection in donkeys: hematological, biochemical and histopathological changes. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 58, 749–756. CrossrefGoogle Scholar

  • Chaudhary Z.I., Iqbal J. 2000. Incidence and haematological alterations induced by natural trypanosomiasis in racing dromedary camels. Acta Tropica, 77, 209–213. DOI.org/10.1016/S0001-706X(00)00142-X

  • Chaudhuri S., Varshney J.P., Patra R.C. 2008. Erythrocytic antioxidant defense, lipid peroxides level and blood iron, zinc and copper concentrations in dogs naturally infected with Babesia gibsoni. Research in Veterinary Science, 85, 120–124. CrossrefGoogle Scholar

  • Dargie J.D., Murray P.K., Murray M., Grimshaw W.R.T., McIntyre W.I.M. 1979. Bovine trypanosomiasis: the red cell kinetics of Ndama and Zebu cattle infected with Trypanosoma congolense. Parasitology International, 78, 271–286. CrossrefGoogle Scholar

  • De U.K., Dey S., Banerjee P.S., Sahoo M. 2012. Correlations among Anaplasma marginale parasitemia and markers of oxidative stress in crossbred calves. Tropical Animal Health and Production, 44, 385–8. CrossrefGoogle Scholar

  • Demerdash F.M., Jebur A.B., Nasr H.M. 2013. Oxidative stress and biochemical perturbations induced by insecticides mixture in rat testes. Journal of Environmental Science and Health, 48, 593–599. CrossrefGoogle Scholar

  • Dimri U., Sharma M.C., Yamdagni A., Ranjan R., Zama M.M.S. 2010. Psoroptic mange infestation increases oxidative stress and decreases antioxidant status in sheep. Veterinary Parasitology, 168, 318–322. CrossrefGoogle Scholar

  • Dobson R.J., Dargantes A.P., Mercado R.T., Reid S.A. 2009. Models for Trypanosoma evansi (surra), its control and economic impact on small-hold livestock owners in the Philippines. International Journal for Parasitology, 39, 1115–1123. CrossrefGoogle Scholar

  • Egbu F.M.I., Ubachukwu P.O., Okoye I.C. 2013. Haematological changes due to bovine fasciolaisis. African Journal of Biotechnology, 12, 1828–1835. CrossrefGoogle Scholar

  • Esmaeilnejad B., Tavassoli M., Asri-Rezaei S., Dalir-Naghadeh B. 2012. Evaluation of antioxidant status and oxidative stress in sheep naturally infected with Babesia ovis. Veterinary Parasitology, 185, 124–30. CrossrefGoogle Scholar

  • Eyob E., Matios L. 2013. Review on camel trypanosomosis (surra) due to Trypanosoma evansi: Epidemiology and host response. Journal of Veterinary Medicine and Animal Health,5, 334– 343. DOI. 10.5897/JVMAH2013.0236Google Scholar

  • Fang Y.Z., Yang S., Wu G. 2002. Free radicals, antioxidants, and nutrition. Nutrition, 18, 872–879. CrossrefGoogle Scholar

  • Fridovich I. 1995. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry, 64, 97–112. CrossrefGoogle Scholar

  • Gill B.S. 1977. Trypanosomes and trypanosomiases of Indian livestock. Information Division Indian Council of Agricultural Research; New DelhiGoogle Scholar

  • Gurbay A., Hıncal F.2004. Ciprofloxacin-induced glutathione redox status alterations in rat tissues. Drug and Chemical Toxicology, 27, 233–42. CrossrefGoogle Scholar

  • Gutierrez C., Corbera J. A., Juste M.C., Doreste F., Morales I. 2005. An outbreak of abortions and high neonatal mortality associated with Trypanosoma evansi infection in dromedary camels in the Canary Islands. Veterinary Parasitology, 30, 163–168. CrossrefGoogle Scholar

  • Gutteridge J.M. 1995. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry, 41,1819–1828Google Scholar

  • Gutteridge J., Halliwell B. 2000. Free radicals and antioxidants in the year 2000: a historical look to the future. Annals of the New York Academy of Sciences, 899, 136–147. CrossrefGoogle Scholar

  • Jatkar P.R., Singh M. 1974. Pathogenesis of anemia in trypanosome infection. IV. Blood glucose studies. Indian Veterinary Journal, 51, 710–714Google Scholar

  • Kahn C.M., Line S. 2010. The Merck Veterinary Manual, 10th ed. Merck & Co. Inc 2584–89Google Scholar

  • Kaplowitz N. 2000. Mechanisms of liver cell injury. Journal of Hepatology, 32, 39–47. CrossrefGoogle Scholar

  • Kumar R., Jain S., Kumar S., Sethi K., Kumar S., Tripathi B. N. 2017. Impact estimation of animal trypanosomosis (surra) on livestock productivity in India using simulation model: Current and future perspective. Veterinary Parasitology: Regional Studies and Reports, 10, 1–12. CrossrefGoogle Scholar

  • Kurt O., Ok U.Z., Ertan P., Yuksel H. 2002. Antioxidant substances and malaria. Acta Parasitologica Turcica. 26, 108–12Google Scholar

  • Li M., You T.Z., Zhu, W.Z., Qu J.P., Liu C., Zhao B., et al. 2013. Antioxidant response and histopathological changes in brain tissue of pigeon exposed to avermectin. Ecotoxicology, 22, 1241–1254. CrossrefGoogle Scholar

  • Luckins A.G. 1988. Trypanosoma evansi in Asia. Parasitology Today 4, 137–142. CrossrefGoogle Scholar

  • Marklund S., Marklund G. 1974. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474Google Scholar

  • Masiga D.K., Smyth A.J., Hayes P., Bromidge T.J., Gibson W.C. 1992. Sensitive detection of trypanosomes in tsetse flies by DNA amplification. International Journal of Parasitology, 22, 909–918. CrossrefGoogle Scholar

  • Mates J.M., Perez-Gomez C., De Castro I.N. 1999. Antioxidant enzymes and human diseases. Clinical Biochemistry, 32, 595– 603. CrossrefGoogle Scholar

  • Meister A., Anderson M.E. 1983. Glutathione. Annual Review of Biochemistry, 52, 711–760Google Scholar

  • Mijares A., Vivas J., Abad C., Betancourt M., Piñero S., Proverbio F., Marín R., Portillo R. 2010. Trypanosoma evansi: Effect of experimental infection on the osmotic fragility, lipid peroxidation and calcium- ATPase activity of rat red blood cells. Experimental Parasitology, 124, 301–305. CrossrefGoogle Scholar

  • Murray R.K., Granner D.K., Mayes P.A, Rodwell V.W. 2003. Harper’s Illustrated Biochemistry a Lange Medical Book, 26th ed. The McGraw-Hill Companies, Inc., United States of America, pp. 622–701Google Scholar

  • Omer O.H., Mousa H.M., Al-Wabel N. 2007. Study on the antioxidant status of rats experimentally infected with Trypanosoma evansi. Veterinary Parasitology, 145, 142–145. CrossrefGoogle Scholar

  • Ozden S., Catalgol B., Gezginci-Oktayoglu S., Arda-Pirincci P., Bolkent S., Alpeortunga B. 2009. Methiocarb-induced oxidative damage following subacute exposure and the protective effects of vitamin E and taurine in rats. Food and Chemical Toxicology, 47, 1676–1684. CrossrefGoogle Scholar

  • Padmaja K. 2012. Haemato-biochemical studies and therapy of trypanosomosis in camels. Veterinary World, 5, 356–358Google Scholar

  • Pamplona R., Costantini D. 2011. Molecular and structural antioxidant defenses against oxidative stress in animals. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301, R843–R863. CrossrefGoogle Scholar

  • Pandey V., Nigam R., Jaiswal A.K., Sudan V., Singh R.K., Yadav P.K. 2015. Haemato–biochemical and oxidative status of buffaloes naturally infected with Trypanosoma evansi. Veterinary Parasitology, 212,118–122. CrossrefGoogle Scholar

  • Parashar R. 2014. Prevalence of trypanosomiosis, its clinicohaemato-biochemical impact and PCR based detection in buffaloes. MVSc Thesis, DUVASU MathuraGoogle Scholar

  • Prins H.K., Loos J.A. 1969. Glutathione In: Biochemical Methods in Red Cell Genetics. (Edited byYunis, J.J.), Academic Press, New York. pp. 115–137Google Scholar

  • Ranjithkumar M., Kamili N.M., Saxena A., Dan A., Dey S., Raut S.S. 2011. Disturbance of oxidant/antioxidant equilibrium in horses naturally infected with Trypanosoma evansi. Veterinary Parasitology, 180, 349–353. CrossrefGoogle Scholar

  • RehmanS., Chandra O., Abdulla M. 1995. Evaluation of malondialdehyde as an index of lead damage in rat brain homogenates. Biometals, 8, 275–279Google Scholar

  • Rezai S.A., Dalir-NaghadehB. 2006. Evaluation of antioxidant status and oxidative stress in cattle naturally infected with Theileria annulata. Veterinary Parasitology, 142:179–186Google Scholar

  • Saker K.E. 2006. Nutrition and immune function. Veterinary Clinics of North America: Small Animal Practice, 36, 1199–1224. CrossrefGoogle Scholar

  • Saleh M.A., Al-Salahy M.B., Sanousi S.A. 2009. Oxidative stress in blood of camels (Camelus dromedaries) naturally infected with Trypanosoma evansi. Veterinary Parasitology, 162, 192– 199. CrossrefGoogle Scholar

  • Sarror D.I. 1976. Plasma copper levels in bovine trypanosomosis. Veterinary Record, 98, pp.196Google Scholar

  • SAS. 2002. Statistical Analysis System. User’s Guide. SAS Institute Inc., Cary, USAGoogle Scholar

  • Sharma A., Singla L.D., Tuli A., Kaur P., Bal M.S. 2015. Detection and assessment of risk factors associated with natural concurrent infection of Trypanosoma evansi and Anaplasma marginale in dairy animals by duplex PCR in eastern Punjab. Tropical Animal Health and Production, 47, 251–257. CrossrefGoogle Scholar

  • Sharma P., Juyal P.D., Singla L.D., Chachra D., Pawar H. 2012. Comparative evaluation of real time PCR assay with conventional parasitological techniques for diagnosis of Trypanosoma evansi in cattle and buffaloes. Veterinary Parasitology, 190, 375–382. DOI.org/10.1016/j.vetpar.2012.07.005

  • SinghV., Tiwari A.K. 2012. Bovine Surra in India: an update. Ruminant Science, 1,1–7Google Scholar

  • Singla L.D., Juyal P.D., Ahuja S.P. 1998. Blood brain barrier status in experimental Trypanosoma evansi infected and levamisole treated cow-calves. Indian Veterinary Journal, 75, 109–12Google Scholar

  • Singla L.D., Juyal P.D., Roy K.S., Kalra I.S. 1997. Host responses of cow-calves against Trypanosoma evansi infection: Haematopathological study. Journal of Veterinary Parasitology 11, 55–63Google Scholar

  • Singla L.D., Sharma A., Kaur P., Bal M.S. 2015. Comparative evaluation of agglutination assay with microscopy and polymerase chain reaction for detection of Trypanosoma evansi in bovines of Punjab. Indian Journal of Animal Sciences, 85, 1164–1166Google Scholar

  • Sivajothi S., Rayulu V.C., Reddy B.S. 2013. Haematological and biochemical changes in experimental Trypanosoma evansi infection in rabbits. Journal of Parasitic Diseases. CrossrefGoogle Scholar

  • Sivajothi S., Rayulu V.C., Reddy B.S., Kumari K.N. 2015. Trypanosoma evansi causes thyroxin imbalance with biochemical alterations in wistar rats. Journal of Advanced Veterinary and Animal Research, 2, 205–209. CrossrefGoogle Scholar

  • Spickett C.M., Jerlich A., Panasenko O.M., Arnhold J., Pitt A.R., Stelmaszyñska T., Schaur R.J. 2000. The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochimica Polonica, 47, 889–900Google Scholar

  • Sumbria D., Singla L.D., Sharma A., Moudgil A.D., Bal M.S. 2014. Equine trypanosomosis in central and western Punjab: Prevalence, haemato-biochemical response and associated risk factors. Acta Tropica, 138, 44–50. CrossrefGoogle Scholar

  • Sumbria D., Singla L.D., Sharma A., Bal M.S., Kumar S. 2015. Multiplex PCR for detection of Trypanosoma evansi and Theileria equi in equids of Punjab, India. Veterinary Parasitology, 211, 293–99. CrossrefGoogle Scholar

  • Taiwo V.O., Olaniyi M.O. and Ogunsanmi A.O. 2003. Comparative plasma biochemical changes and susceptibility of erythrocytes to in vitro peroxidation during experimental Trypanosoma congolense and T. brucei infections in sheep. Israel Journal of Veterinary Medicine, 112–117Google Scholar

  • Takeet M.I., Adeleye A.I., Adebayo O.O., Akande F.A. 2009. Haematology and serum biochemical alteration in stress induced equine theileriosis. A case report. The Scientific World Journal, 4, 19–21. CrossrefGoogle Scholar

  • Takeet M.I., Fagbemi B.O. 2009. Haematological, pathological and plasma biochemical changes in rabbits experimentally infected with Trypanosoma congolense. The Scientific World Journal, 4. CrossrefGoogle Scholar

  • Weinberg E.D. 1978. Iron and infection. Microbiological Reviews. 42, 45–66Google Scholar

  • Wolkmer P., da Silva A.S., Traesel C.K., Paim F.C., Cargnelutti J.F., Pagnoncelli M., Picada M.E., Monteiro S.G., dos Anjos Lopes S.T. 2009. Lipid peroxidation associated with anemia in rats experimentally infected with Trypanosoma evansi. Veterinary Parasitology, 165, 41–46. CrossrefGoogle Scholar

  • Wolkmer P., Schafer da Silva A., Felipetto Cargnelutti J., Machado Costa M., Kist Traesel C., dos Anjos Lopes S., Gonzalez Monteiro S. 2007. Resposta eritropoética de ratos em diferentes graus de parasitemia por Trypanosoma evansi. Ciencia Rural. 37, 1682–1687Google Scholar

  • Xing H., Li S., Wang Z., Gao X., Xu S., Wang X. 2012. Oxidative stress response and histopathological changes due to atrazine and chlorpyriphos exposure in common carp. Pesticide Biochemistry and Physiology, 103, 74–80. CrossrefGoogle Scholar

About the article

Received: 2018-06-08

Revised: 2018-07-10

Accepted: 2018-07-17

Published Online: 2018-10-18

Published in Print: 2018-12-19


Conflict of interest. None of the authors of this paper has a financial or personal relationship with other people or organizations that could in appropriately influence or bias the content of the paper.


Citation Information: Acta Parasitologica, Volume 63, Issue 4, Pages 733–743, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0087.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in