Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 63, Issue 4

Issues

Molecular characterization and phylogenetic analysis of Acanthamoeba isolates in tap water of Beni-Suef, Egypt

Wegdan M. Abd El Wahab
  • Corresponding author
  • Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ayman A. El-Badry
  • Department of Microbiology-Medical Parasitology Section, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Doaa A. Hamdy
  • Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-18 | DOI: https://doi.org/10.1515/ap-2018-0101

Abstract

The genus Acanthamoeba is a free-living amoeba widely distributed in various aquatic environments. It is an etiologic cause of amoebic encephalitis and keratitis particularly for immunocompromised individuals. The purpose of the present study was to investigate Acanthamoeba species prevalence in household and hospital potable water in Beni-Suef governorate, Egypt, and to employ sequencing methods to identify positive Acanthamoeba species isolates and their potential health risks. Sixty tap water samples (30 household and 30 governmental and private hospital settings) collected from Beni-Suef governorate, Egypt were filtered, cultured on non-nutrient agar, identified by morphotyping keys after staining with Giemsa stain and then confirmed by PCR using Acanthamoeba specific primers. Twenty positive samples were successfully genetically characterized and phylogenetically analyzed to identify Acanthamoeba species. The total detection rate for Acanthamoeba was 48/60 (80%); Acanthamoeba contamination in water collected from domestic houses was higher than in hospitals; 27/30 (90%) versus 21/30 (70%) with statistical significant value (P value = 0.05). Sequencing of 20 positive isolates revealed Acanthamoeba T4 in 65% and T2 in 35%. To our knowledge, this is the first research that documents the occurrence and phylogeny of Acanthamoeba species in Beni-Suef, Egypt. The presence of a higher percentage of Acanthamoeba species in tap water, in particular T4, highlights the potential health hazards for immunocompromised individuals and emphasizes the urgent need for the implementation of effective filtration and disinfection measures.

Keywords: Acanthamoeba spp.; Egypt; genetic characterization; water resources

References

  • Al-Herrawy A.Z., Gad M.A. 2017. Assessment of Two Different Drinking Water Treatment Plants for the Removal of Free-living Amoebae, Egypt. Iranian Journal of Parasitology, 12, 413–422Google Scholar

  • Al-Herrawy A., Bahgat M., Mohammed A., Ashour A., Hikal W. 2013. Morpho-physiological and biochemical criteria of Acanthamoeba spp. isolated from the Egyptian aquatic environment. Iranian Journal of Parasitology, 8, 302– 312Google Scholar

  • Al-Herrawy A.Z., Mohamed S.H., Mohamed A.H., Zaghloul N.M. 2015. Surveillance of potentially pathogenic free-living amoebae through drinking water treatment processes in Fayoum Governorate, Egypt. International Environment, 4, 98–107Google Scholar

  • Alsam S., Kim K.S., Stins M., Rivas A.O., Sissons J., Khan N.A. 2003. Acanthamoeba interactions with human brain microvascular endothelial cells. Microbial Pathogenesis, 35, 235–41. CrossrefGoogle Scholar

  • Astorga B., Lorenzo-Morales J., Martín-Navarro C.M., Alarcón V., Moreno J., González A.C., Navarrete E., Piñero J.E., Valladares B. 2011. Acanthamoeba belonging to T3, T4, and T11: genotypes isolated from air-conditioning units in Santiago, Chile. Journal of Eukaryotic Microbiology, 58, 542–4. CrossrefGoogle Scholar

  • Bagheri H.R., Shafiei R., Shafiei F., Sajjadi S.A. 2010. Isolation of Acanthamoeba Spp. from drinking waters in several hospitals of Iran. Iranian Journal of Parasitology, 5, 19–25Google Scholar

  • Baquero R.A., Reyes-Batlle M., Nicola G.G., Martı´n-Navarro C.M., Lo´pez-Arencibia A., Esteban J.G., et al. 2014. Presence of potentially pathogenic free-living amoebae strains from well water samples in Guinea-Bissau. Pathogens and Global Health, 108, 206–211. CrossrefGoogle Scholar

  • Berger P., Papazian L., Drancourt M., La Scola B., Auffray J.P., Raoult D. 2006. Ameba-associated microorganisms and diagnosis of nosocomial pneumonia. Emerging Infectious Diseases, 12, 248–255. CrossrefGoogle Scholar

  • Boost M., Cho P., Lai S., Sun W.M.2008. Detection of Acanthamoeba in tap water and contact lens cases using polymerase chain reaction. Optometry and Vision Science, 85, 526–30. CrossrefGoogle Scholar

  • Booton G.C., Visvesvara G.S., Byers T.J., Kelly D.J., Fuerst P.A. 2005. Identification and distribution of Acanthamoeba species genotypes associated with non-keratitis infections. Journal of Clinical Microbiology, 43, 1689–1693. CrossrefGoogle Scholar

  • Bradbury R.S., French L.P., Blizzard L. 2014. Prevalence of Acanthamoeba spp. in Tasmanian intensive care clinical specimens. Journal of Hospital Infection, 86, 178–81. CrossrefGoogle Scholar

  • Carlesso A.M., Artuso G.L., Caumo K., Rott M.B. 2010. Potentially pathogenic Acanthamoeba isolated from a hospital in Brazil. Current Microbiology, 60, 185–190. CrossrefGoogle Scholar

  • Corsaro D., Walochnik J., Kohsler M., Rott M.B. 2015. Acanthamoeba misidentification and multiple labels: redefining genotypes T16, T19, and T20 and proposal for Acanthamoeba micheli sp. nov. (genotype T19). Parasitology Research, 114, 2481–90. CrossrefGoogle Scholar

  • Coşkun K.A., Özçelik S., Tutar L., Elaldı N., Tutar Y. 2013. Isolation and identifiation of free-living amoebae from tap water in Sivas, Turkey. Biomed Research International, 1–8. CrossrefGoogle Scholar

  • Crary M.J. 2012. Genetic variability and its relationship to Acanthamoeba pathogenesis. PhD thesis, The Ohio State University, Columbus, Ohio, USAGoogle Scholar

  • Dendana F., Sellami H., Jarraya F., Sellami A., Makni F., Cheikhrouhou F., et al. 2008. Free-living amoebae (FLA): Detection, morphological and molecular identification of Acanthamoeba genus in the hydraulic system of an haemodialysis unit in Tunisia. Parasite. 15, 137–42. CrossrefGoogle Scholar

  • Edagawa A., Kimura A., Kawabuchi-Kurata T., Kusuhara Y., Karanis P. 2009. Isolation and genotyping of potentially pathogenic Acanthamoeba and Naegleria species from tap-water sources in Osaka, Japan. Parasitology Research, 105, 1109–17. CrossrefGoogle Scholar

  • Ertabaklar H., Turk M., Dayanir V., Ertu S., Walochnik J. 2007. Acanthamoeba keratitis due to Acanthamoeba genotype T4 in a non-contact-lens wearer in Turkey. Parasitology Research, 100, 241–246. CrossrefGoogle Scholar

  • Ghadar-ghadr S.H., Solhjoo K., Norouz-nejad M.J., Rohi R., ZiaJahromi S. 2012. Isolation and identification of free livingamoeba (Naegleriaand Acanthamoeba) in Shiraz water resources by morphological criteria. Journal of Jahrom University of Medical Sciences, 10, 33–42. CrossrefGoogle Scholar

  • Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98Google Scholar

  • Hammersmith K.M. 2006. Diagnosis and management of Acanthamoeba Keratitis. Current Opinion in Ophthalmology, 17, 327–31. CrossrefGoogle Scholar

  • Hassan A., Farouk H., Hassanein F., Abdul-Ghani R., Abdelhady A.H. 2012. Acanthamoeba contamination of hemodialysis and dental units in Alexandria, Egypt: A neglected potential source of infection. Journal of Infection and Public Health, 5, 304– 10. CrossrefGoogle Scholar

  • Jeong H.J., Yu H.S. 2005. The role of domestic tap water in Acanthamoeba contamination in contact lens storage cases in Korea. Korean Journal of Parasitology 43, 47–50Google Scholar

  • Kao P.M., Chou M.Y., Tao C.W., Huang W.C., Hsu B.M., Shen S.M. et al. 2013. Diversity and seasonal impact of Acanthamoeba species in a subtropical river shed. Biomed Research International, 7, 1–8Google Scholar

  • Khan N.A., Jarroll E.L., Paget T.A. 2002. Molecular and physiological differentiation between pathogenic and nonpathogenic Acanthamoeba. Current Microbiology, 45, 197–202. CrossrefGoogle Scholar

  • Khurana S., Biswal M., Kaur H., Malhotra P., Arora P., Megha K., Taneja N., Sehgal R. 2015. Free living amoebae in water sources of critical units in a tertiary care hospital in India. Indian Journal of Medical Microbiology, 33, 343–8. CrossrefGoogle Scholar

  • Kilic A., Tanyuksel M., Sissons J., Jayasekera S., Khan N.A. 2004. Isolation of Acanthamoeba isolates belonging to T2, T3, T4 and T7 genotypes from environmental samples in Ankara, Turkey. Acta Parasitologica, 49, 246–252Google Scholar

  • Kilvington S., Price J. 1990. Survival of Legionella pneumophila within cysts of Acanthamoeba polyphaga following chlorine exposure. Journal of Applied Bacteriology, 68, 519–25Google Scholar

  • Kilvington S., Beeching J.R., White D.G. 1991. Differentiation of Acanthamoeba strains from infected corneas and the environment using restriction endonuclease digestion of wholecell DNA. Journal of Clinical Microbiology, 29, 310–4Google Scholar

  • Kilvington S., Gray T., Dart J., Morlet N., Beeching J.R., Frazer D.G., et al. 2004. Acanthamoeba keratitis: the role of domestic tap water contamination in the United Kingdom. Invest. Optometry and Vision Science, 45, 165–169Google Scholar

  • Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. CrossrefGoogle Scholar

  • Lasjerdi Z., Niyyati M., Haghighi A., Shahabi S., Biderouni F.T., Taghipour N., et al. 2011. Potentially pathogenic free-living amoebae isolated from hospital wards with immunodeficient patients in Tehran, Iran. Parasitology Research, 109, 575–80. CrossrefGoogle Scholar

  • Leiva B., Clasdotter E., Linder E., Winiecka-Krusnell J. 2007. Free-living Acanthamoeba and Negleria spp. Amebae in water sources of León, Nicaragua. Revista de Biología Tropical, 56, 439–46Google Scholar

  • Lorenzo-Morales J., Khan N.A., Walochnik J. 2015. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite, 22, 1–20. CrossrefGoogle Scholar

  • Lorenzo-Morales J., Martı´n-Navarro C.M., Lo´pez-Arencibia A., Arnalich-Montiel F., Pin˜ero J.E., Valladares B. 2013. Acanthamoeba keratitis: an emerging disease gathering importance worldwide? Trends in Parasitology, 29, 181–7. CrossrefGoogle Scholar

  • Lorenzo-Morales J., Ortega-Rivas A., Martı´nez E., Khoubbane M., Artigas P., Periago M.V. et al. 2006. Acanthamoeba isolates belonging to T1, T2, T3, T4 and T7 genotypes from environmental freshwater samples in the Nile Delta region, Egypt. Acta Tropica, 100, 63–9. CrossrefGoogle Scholar

  • Lorenzo-Morales J., Ortega-Rivas A., Martinez E., Foronda P., Valladares B. 2005. Isolation and identification of pathogenic Acanthamoeba strains in Tenerife, Canary Island, Spain from water sources. Parasitology Research, 95, 273–277. CrossrefGoogle Scholar

  • Maciver S.K., Asif M., Simmen M.W., Lorenzo-Morales J.A. 2013. Systematic analysis of Acanthamoeba genotype frequency correlated with source and pathogenicity: T4 is confirmed as a pathogen-rich genotype. European Journal of Protistology, 49, 217–21. CrossrefGoogle Scholar

  • Maghsood A.H., Sissons J., Rezaian M., Nolder D., Warhurst D., Khan N.A. 2005. Acanthamoeba genotype T4 from the UK and Iran and isolation of the T2 genotype from clinical isolates. Journal of Medical Microbiology, 54, 755–9. CrossrefGoogle Scholar

  • Magliano A.C., da Silva F.M., Teixeira M.M., Alfieri S.C. 2009. Genotyping, physiological features and proteolytic activities of a potentially pathogenic Acanthamoeba sp. isolated from tap water in Brazil. Experimental Parasitology, 123, 231–5. CrossrefGoogle Scholar

  • Magnet A., Henriques-Gil N., Galván-Diaz A.L., Izquiedo F., Fenoy S., del Aguila C. 2014. Novel Acanthamoeba 18S rRNA gene sequence type from an environmental isolate. Parasitology Research, 113, 2845–2850. CrossrefGoogle Scholar

  • Mella C., Medina G., Flores-Martin S., Toledo Z., Simaluiza R.J., Pérez-Pérez G., Fernández H. 2016. Interaction between zoonotic bacteria and free living amoebas. A new angle of an epidemiological polyhedron of public health importance? Archivos de Medicina Veterinaria, 48, 1–10. CrossrefGoogle Scholar

  • Morsy G.H., Al-Herrawy A.Z., Elsenousy W.M., Marouf M.A. 2016. Prevalence of free-living amoebae in tap water and biofilm, Egypt. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7, 752–759Google Scholar

  • Niyyati M., Lasgerdi Z., Lorenzo-Morales J. 2015. Detection and Molecular Characterization of Potentially Pathogenic Freeliving Amoebae from Water Sources in Kish Island, Southern Iran. Microbiology Insights, 8 (Suppl 1), 1–6. CrossrefGoogle Scholar

  • Onichandran S., Kumar T., Salibay C.C., Dungca J.Z., Tabo H.A., Tabo N., et al. 2014. Waterborne parasites: a current status from the Philippines. Parasites and Vectors. 7, 244. CrossrefGoogle Scholar

  • Ovrutsky A.R., Chan E.D., Kartalija M., Bai X., Jackson M., Gibbs S., et al. 2013. Cooccurrence of free-living amoebae and nontuberculous Mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Applied and Environmental Microbiology, 79, 3185–92. CrossrefGoogle Scholar

  • Özçelik S., Coşkun K.A., Yünlü Ö., Alim A., Malatyalı E. 2012. The Prevalence, Isolation and Morphotyping of Potentially Pathogenic Free-Living Amoebae from Tap Water and Environmental Water Sources in Sivas. Türkiye Parazitoloji Dergisi, 36, 198–203. CrossrefGoogle Scholar

  • Page F.C. 1976. An illustrated key to freshwater and soil amoebae. Freshwater Biological Association, Ferry House, Far Sawrey, Ambleside, England. 62–66.Google Scholar

  • Rozej A., Cydzik-Kwiatkowska A., Kowalska B., Kowalski D. 2015. Structure and microbial diversity of biofims on different pipe materials of a model drinking water distribution systems. World Journal of Microbiology and Biotechnology, 31, 37– 47. CrossrefGoogle Scholar

  • Sadaka H.A., el-Nassery S.F., Abou Samra L.M., Awadalla H.N. 1994. Isolation and identification of free-living amoebae from some water sources in Alexandria. Journal of Egyptian Society of Parasitology, 24, 247–57Google Scholar

  • Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406 – 425. CrossrefGoogle Scholar

  • Sakran T.F., El-Shahawy A.G., Shalaby M.A., Sabry H.Y., Matooq P.M., Elmallah A.M. 2017. Detection rates of waterborne protozoa in water sources from Fayoum Governorate. Parasitology United Journal, 10, 30–38. CrossrefGoogle Scholar

  • Sarıca F.B., Tufan K., Çekinmez M., Erdoğan B., Altınors M.N. 2009. A rare but fatal case of Granulomatous Amebic Encephalitis with Brain abscess. The first case reported from Turkey. Turkish Neurosurgery, 19, 256–9Google Scholar

  • Schroeder J.M., Booton G.C., Hay J., Niszl I.A., Seal D.V., Markus M.B., et al. 2001. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of acanthamoebae from humans with keratitis and from sewage sludge. Journal of Clinical Microbiology, 39, 1903–11. CrossrefGoogle Scholar

  • Schuster F.L. 2002. Cultivation of pathogenic and opportunistic freeliving amebas. Clinical Microbiology Reviews, 15, 342–354. CrossrefGoogle Scholar

  • Stockman L.J., Wright C.J., Visvesvara G.S., Fields B.S., Beach M.J. 2011. The prevalence of Acanthamoeba spp. and other freeliving amoebae in household water, Ohio, USA 1990-1992. Parasitology Research, 108, 621–7. CrossrefGoogle Scholar

  • Storey M.V., Winiecka-Krusnell J., Ashbolt N.J., Stenström T.A. 2004. The efficacy of heat and chlorine treatment against thermotolerant Acanthamoebae and Legionella. Scandinavian Journal of Infectious Diseases, 36, 656–62. CrossrefGoogle Scholar

  • Taher E.E., Méabed EMH, Abdallah I., Abdel Wahed W.Y. 2017. Acanthamoeba keratitis in noncompliant soft contact lenses users: Genotyping and risk factors, a study from Cairo, Egypt. Journal of Infection and Public Health, 28. pii: S1876–0341, 30247–2. CrossrefGoogle Scholar

  • Tawfeek G.M., Bishara S.A., Sarhan R.M., Taher E.E., Khayyal A.E. 2016. Genotypic, physiological, and biochemical characterization of potentially pathogenic Acanthamoeba isolated from the environment in Cairo, Egypt. Parasitology Research, 115, 1871–1881. CrossrefGoogle Scholar

  • Teixeira L.H., Rocha S., Pinto R.M.F., Caseiro M.M., da Costa S.O.P. 2009. Prevalence of Potentially Pathogenic Free-Living Amoebae from Acanthamoeba and Naegleria Genera in Non-Hospital, Public, Internal Environments from the City of Santos, Brazil. Brazilian Journal of Infectious Diseases, 13, 395–397. CrossrefGoogle Scholar

  • Thomas V., McDonnell G., Denyer S.P., Maillard J.Y. 2010. Free living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiology Reviews, 34, 231–59. CrossrefGoogle Scholar

  • Thomas V., Loret J.F., Jousset M., Greub G. 2008. Biodiversity of amoebae and amoebae-resisting bacteria in a drinking water treatment plant. Environmental Microbiology, 10, 2728–45. CrossrefGoogle Scholar

  • Trabelsi H., Dendana F., Sellami A., Cheikhrouhou F., Neji S., Makni F., et al. 2012. Pathogenic free living amoebae: epidemiology and clinical review. Pathologie Biologie, 60, 399–405. CrossrefGoogle Scholar

  • Trabelsi H., Sellami A., Dendena F., Sellami H., Cheikh-Rouhou F., Makni F., Ayadi A. 2010. Free-living Amoebae (FLA): Morphological and molecular identification of Acanthamoeba in dental unit water. Parasite. 17, 67–70 CrossrefGoogle Scholar

  • Tsvetkova N., Schild M., Panaiotov S., Kurdova-Mintcheva R., Gottstein B., Walochnik J., et al. 2004. The identification of free-living environmental isolates of amoebae from Bulgaria. Parasitology Research, 92, 405–13. CrossrefGoogle Scholar

  • Wang W., Wei F., Li J., Li N., Liu Q. 2014. Isolation and Identification of Naegleria Species from Environmental Water in Changchun, Northeastern China. Iranian Journal of Parasitology, 9, 254–9Google Scholar

  • Xuan Y., Shen Y., Ge Y., Yan G., Zheng S. 2017. Isolation and identification of Acanthamoeba strains from soil and tap water in Yanji, China. Environmental Health and Preventive Medicine, 22, 1–6. CrossrefGoogle Scholar

  • Yousuf F.A., Siddiqui R., Khan N.A. 2013. Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila. Parasites and Vectors, 6, 169. CrossrefGoogle Scholar

About the article

Received: 2018-08-09

Revised: 2018-08-24

Accepted: 2018-08-29

Published Online: 2018-10-18

Published in Print: 2018-12-19


Funding. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

Competing Interest. The authors have declared that no competing interest exists.

Ethical approval. this study was approved by ethical committee of Faculty of Medicine, Beni-Suef University.


Citation Information: Acta Parasitologica, Volume 63, Issue 4, Pages 826–834, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2018-0101.

Export Citation

© 2018 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in