Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Advances in Pure and Applied Mathematics

Editor-in-Chief: Trimeche, Khalifa

Editorial Board Member: Sifi, Mohamed / Zaag, Hatem / Zarati, Said / Bezzarga, Mounir / Kamoun, Lotfi / Karoui, Abderrazek / Mili, Maher / Aldroubi, Akram / Anker, Jean-Philippe / Bahouri, Hajer / Baklouti, Ali / Bakry, Dominique / Beznea, Lucian / Bonami, Aline / Demailly, Jean-Pierre / Fleckinger, Jacqueline / Gallardo, Leonard / Ismail, Mourad / Jouini, Elyes / Maday, Yvon / Mustapha, Sami / Ovsienko, Valentin / Pouzet, Maurice / Radulescu, Vicentiu / Schwartz, Lionel / Kobayashi, Toshiyuki / Aouadi, Saloua / Baraket, Sami / Begehr, Heinrich / Ben Abdelghani, Leila / Jarboui, Noomen / Marzougui, Habib / Peigné, Mark

4 Issues per year

CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2015: 0.342
Source Normalized Impact per Paper (SNIP) 2015: 0.554

Mathematical Citation Quotient (MCQ) 2015: 0.33

See all formats and pricing
In This Section

Warfield invariants of normed unit groups in abelian group rings

Peter Danchev
  • Mathematics and Informatics Department, Plovdiv State University, 4000 Plovdiv, Bulgaria
  • Email:
Published Online: 2012-01-19 | DOI: https://doi.org/10.1515/apam.2011.007


Suppose G is an abelian group and R is a commutative ring with identity of prime characteristic p. In some special cases for R and G we compute only in their terms and sections the Warfield p-invariants of the normed unit group VR[G] in a commutative group ring R[G]. This supplies our recent results in this way.

Keywords.: Groups; rings; fields; units; idempotents; Warfield invariants; cardinalities

About the article

Received: 2010-10-18

Accepted: 2011-03-22

Published Online: 2012-01-19

Published in Print: 2012-01-01

Citation Information: Advances in Pure and Applied Mathematics, ISSN (Online) 1869-6090, ISSN (Print) 1867-1152, DOI: https://doi.org/10.1515/apam.2011.007. Export Citation

Comments (0)

Please log in or register to comment.
Log in