Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Pure and Applied Mathematics

Editor-in-Chief: Trimeche, Khalifa

Editorial Board: Aldroubi, Akram / Anker, Jean-Philippe / Aouadi, Saloua / Bahouri, Hajer / Baklouti, Ali / Bakry, Dominique / Baraket, Sami / Ben Abdelghani, Leila / Begehr, Heinrich / Beznea, Lucian / Bezzarga, Mounir / Bonami, Aline / Demailly, Jean-Pierre / Fleckinger, Jacqueline / Gallardo, Leonard / Ismail, Mourad / Jarboui, Noomen / Jouini, Elyes / Karoui, Abderrazek / Kamoun, Lotfi / Kobayashi, Toshiyuki / Maday, Yvon / Marzougui, Habib / Mili, Maher / Mustapha, Sami / Ovsienko, Valentin / Peigné, Marc / Pouzet, Maurice / Radulescu, Vicentiu / Schwartz, Lionel / Sifi, Mohamed / Zaag, Hatem / Zarati, Said

4 Issues per year

CiteScore 2017: 1.29

SCImago Journal Rank (SJR) 2017: 0.177
Source Normalized Impact per Paper (SNIP) 2017: 0.409

Mathematical Citation Quotient (MCQ) 2017: 0.21

See all formats and pricing
More options …

Variational analysis for an indefinite quasilinear problem with variable exponent

Mabrouk Bouslimi
  • Institut Préparatoire aux Études d'Ingénieurs de Tunis, Université de Tunis, Rue Jawaher Lel Nehru, 1008 Montfleury, Tunis, Tunisia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Khaled Kefi
  • Institut Supérieur du Transport et de la Logistique de Sousse, Université de Sousse, 12 Rue Abdallah Ibn Zoubeir, 4029-Sousse, Tunisia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Felician-Dumitru Preda
Published Online: 2012-01-19 | DOI: https://doi.org/10.1515/apam.2011.011


We study the nonlinear boundary value problem - div ((|u(x)|p1(x)-2+|u(x)|p2(x)-2u(x) =V1(x)|u|q(x)-2u-V2(x)|u|(x)-2u in , u=0 on , where is a bounded domain in N with smooth boundary, , are positive real numbers, p1, p2, q, are continuous functions on , V1 and V2 are weight functions in generalized Lebesgue spaces Ls1(x)() and Ls2(x)(), respectively, such that V1>0 in an open set 0 with |0|>0 and V20 on . We prove, under appropriate conditions that for any >0 there exists * sufficiently small such that for any (0,*) the above nonhomogeneous quasilinear problem has a nontrivial positive weak solution. The proof relies on some variational arguments based on Ekeland's variational principle.

Keywords.: p(x)$p(x)$-Laplace operator; generalized Sobolev spaces; mountain pass theorem; Ekeland's variational principle; weak solution

About the article

Received: 2011-04-20

Accepted: 2011-06-09

Published Online: 2012-01-19

Published in Print: 2012-01-01

Citation Information: Advances in Pure and Applied Mathematics, Volume 3, Issue 1, Pages 67–83, ISSN (Online) 1869-6090, ISSN (Print) 1867-1152, DOI: https://doi.org/10.1515/apam.2011.011.

Export Citation

Comments (0)

Please log in or register to comment.
Log in