Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Pure and Applied Mathematics

Editor-in-Chief: Trimeche, Khalifa

Editorial Board Member: Aldroubi, Akram / Anker, Jean-Philippe / Aouadi, Saloua / Bahouri, Hajer / Baklouti, Ali / Bakry, Dominique / Baraket, Sami / Ben Abdelghani, Leila / Begehr, Heinrich / Beznea, Lucian / Bezzarga, Mounir / Bonami, Aline / Demailly, Jean-Pierre / Fleckinger, Jacqueline / Gallardo, Leonard / Ismail, Mourad / Jarboui, Noomen / Jouini, Elyes / Karoui, Abderrazek / Kamoun, Lotfi / Kobayashi, Toshiyuki / Maday, Yvon / Marzougui, Habib / Mili, Maher / Mustapha, Sami / Ovsienko, Valentin / Peigné, Marc / Pouzet, Maurice / Radulescu, Vicentiu / Schwartz, Lionel / Sifi, Mohamed / Zaag, Hatem / Zarati, Said

4 Issues per year


CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.227
Source Normalized Impact per Paper (SNIP) 2016: 0.717

Mathematical Citation Quotient (MCQ) 2016: 0.28

Online
ISSN
1869-6090
See all formats and pricing
More options …

Segal–Bargmann transform and Paley–Wiener theorems on Heisenberg motion groups

Suparna Sen
  • Corresponding author
  • Department of Mathematics, Indian Institute of Science, Bangalore 560012, India. Current address: Stat-Math Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-17 | DOI: https://doi.org/10.1515/apam-2015-0010

Abstract

We consider the Heisenberg motion groups ℍ𝕄 = ℍnK, where ℍn is the Heisenberg group and K is a compact subgroup of U(n) such that (K,ℍn) is a Gelfand pair. We study the Segal–Bargmann transform on ℍ𝕄 and characterise the Poisson integrals associated to the Laplacian for ℍ𝕄 using Gutzmer's formula. We also prove a Paley–Wiener type theorem involving complexified representations using explicit realisations of some unitary irreducible representations of ℍ𝕄.

Keywords: Segal–Bargmann transform; Poisson integrals; Paley–Wiener theorems

MSC: 22E30; 22E45

About the article

Received: 2015-02-24

Accepted: 2015-10-04

Published Online: 2015-11-17

Published in Print: 2016-01-01


Funding Source: Council of Scientific and Industrial Research, India

Award identifier / Grant number: Shyama Prasad Mukherjee Fellowship


Citation Information: Advances in Pure and Applied Mathematics, ISSN (Online) 1869-6090, ISSN (Print) 1867-1152, DOI: https://doi.org/10.1515/apam-2015-0010.

Export Citation

© 2016 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in