Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Pure and Applied Mathematics

Editor-in-Chief: Trimeche, Khalifa

Editorial Board: Aldroubi, Akram / Anker, Jean-Philippe / Aouadi, Saloua / Bahouri, Hajer / Baklouti, Ali / Bakry, Dominique / Baraket, Sami / Ben Abdelghani, Leila / Begehr, Heinrich / Beznea, Lucian / Bezzarga, Mounir / Bonami, Aline / Demailly, Jean-Pierre / Fleckinger, Jacqueline / Gallardo, Leonard / Ismail, Mourad / Jarboui, Noomen / Jouini, Elyes / Karoui, Abderrazek / Kamoun, Lotfi / Kobayashi, Toshiyuki / Maday, Yvon / Marzougui, Habib / Mili, Maher / Mustapha, Sami / Ovsienko, Valentin / Peigné, Marc / Pouzet, Maurice / Radulescu, Vicentiu / Schwartz, Lionel / Sifi, Mohamed / Zaag, Hatem / Zarati, Said


CiteScore 2017: 1.29

SCImago Journal Rank (SJR) 2017: 0.177
Source Normalized Impact per Paper (SNIP) 2017: 0.409

Mathematical Citation Quotient (MCQ) 2017: 0.21

Online
ISSN
1869-6090
See all formats and pricing
More options …

Sparse reconstruction with multiple Walsh matrices

Enrico Au-Yeung
Published Online: 2018-05-15 | DOI: https://doi.org/10.1515/apam-2017-0047

Abstract

The problem of how to find a sparse representation of a signal is an important one in applied and computational harmonic analysis. It is closely related to the problem of how to reconstruct a sparse vector from its projection in a much lower-dimensional vector space. This is the setting of compressed sensing, where the projection is given by a matrix with many more columns than rows. We introduce a class of random matrices that can be used to reconstruct sparse vectors in this paradigm. These matrices satisfy the restricted isometry property with overwhelming probability. We also discuss an application in dimensionality reduction where we initially discovered this class of matrices.

Keywords: Random matrices; sparse reconstruction; signal processing

MSC 2010: 42; 46

References

  • [1]

    R. Baraniuk, V. Cevher, M. F. Duarte and C. Hegde, Model-based compressive sensing, IEEE Trans. Inform. Theory 56 (2010), no. 4, 1982–2001. CrossrefWeb of ScienceGoogle Scholar

  • [2]

    R. Baraniuk, M. Davenport, R. DeVore and M. Wakin, A simple proof of the restricted isometry property for random matrices, Constr. Approx. 28 (2008), no. 3, 253–263. CrossrefWeb of ScienceGoogle Scholar

  • [3]

    R. Basri and D. W. Jacobs, Lambertian reflection and linear subspaces, IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003), no. 3, 218–233. CrossrefGoogle Scholar

  • [4]

    P. Belhumeur, J. Hespanha and D. Kriegman, Eigenfaces versus Fisherfaces: Recognition using class specific linear projection, IEEE Trans. Pattern Anal. Mach. Intell. 19 (1997), no. 7, 711–720. CrossrefGoogle Scholar

  • [5]

    T. Blumensath and M. Davies, Iterative hard thresholding for compressed sensing, Appl. Comput. Harmon. Anal. 27 (2009), no. 3, 265–74. Web of ScienceCrossrefGoogle Scholar

  • [6]

    A. Bruckstein, D. L. Donoho and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev. 51 (2009), no. 1, 34–81. CrossrefWeb of ScienceGoogle Scholar

  • [7]

    E. Candes, The restricted isometry property and its implications for compressed sensing, C. R. Math. Acad. Sci. Paris 346 (2008), no. 9–10, 589–592. CrossrefGoogle Scholar

  • [8]

    E. Candes, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory 52 (2006), no. 2, 489–509. CrossrefGoogle Scholar

  • [9]

    E. Candes, J. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math. 59 (2006), no. 8, 1207–1223. CrossrefGoogle Scholar

  • [10]

    A. Cohen, W. Dahmen and R. DeVore, Compressed sensing and best k-term approximation, J. Amer. Math. Soc. 22 (2009), no. 1, 211–231. Google Scholar

  • [11]

    D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006), no. 4, 1289–1306. CrossrefGoogle Scholar

  • [12]

    D. L. Donoho and J. Tanner, Counting faces of randomly projected polytopes when the projection radically lowers dimension, J. Amer. Math. Soc. 22 (2009), no. 1, 1–53. Google Scholar

  • [13]

    S. Foucart, Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants, Approximation Theory XIII: San Antonio 2010, Springer Proc. Math. 13, Springer, New York (2012), 65–77. Google Scholar

  • [14]

    S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Appl. Numer. Harmon. Anal., Birkhäuser, New York, 2013. Google Scholar

  • [15]

    J. Haupt, W. U. Bajwa, G. Raz, S. Wright and R. Nowak, Toeplitz-structured compressed sensing matrices, IEEE/SP 14th Workshop on Statistical Signal Processing – SSP ’07, IEEE Press, Piscataway (2007), 294–298. Google Scholar

  • [16]

    F. Krahmer and R. Ward, New and improved Johnson–Lindenstrauss embeddings via the restricted isometry property, SIAM J. Math. Anal. 43 (2011), no. 3, 1269–1281. Web of ScienceCrossrefGoogle Scholar

  • [17]

    M. Ledoux and M. Talagrand, Probability in Banach Spaces. Isoperimetry and Processes, Ergeb. Math. Grenzgeb. (3) 23, Springer, Berlin, 1991. Google Scholar

  • [18]

    K. Li and S. Cong, State of the art and prospects of structured sensing matrices in compressed sensing, Front. Comput. Sci. 9 (2015), no. 5, 665–677. Web of ScienceCrossrefGoogle Scholar

  • [19]

    S. Mendelson, A. Pajor and N. Tomczak-Jaegermann, Uniform uncertainty principle for Bernoulli and Subgaussian ensembles, Constr. Approx. 28 (2008), no. 3, 277–289. CrossrefWeb of ScienceGoogle Scholar

  • [20]

    H. Rauhut, Random sampling of sparse trigonometric polynomials, Appl. Comput. Harmon. Anal. 22 (2007), no. 1, 16–42. CrossrefWeb of ScienceGoogle Scholar

  • [21]

    H. Rauhut, Compressive sensing and structured random matrices, Theoretical Foundations and Numerical Methods for Sparse Recovery, Radon Ser. Comput. Appl. Math. 9, Walter de Gruyter, Berlin, (2010), 1–92. Google Scholar

  • [22]

    H. Rauhut and R. Ward, Sparse Legendre expansions via l1-minimization, J. Approx. Theory 164 (2012), no. 5, 517–533. Web of ScienceGoogle Scholar

  • [23]

    M. Rudelson and R. Vershynin, On sparse reconstruction from Fourier and Gaussian measurements, Comm. Pure Appl. Math. 61 (2008), no. 8, 1025–1045. CrossrefGoogle Scholar

  • [24]

    M. Talagrand, Majorizing measures: The generic chaining, Ann. Probab. 24 (1996), no. 3, 1049–1103. CrossrefGoogle Scholar

  • [25]

    J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Inform. Theory 50 (2004), no. 10, 2231–2242. CrossrefGoogle Scholar

  • [26]

    J. A. Tropp, Just relax: Convex programming methods for identifying sparse signals in noise, IEEE Trans. Inform. Theory 52 (2006), no. 3, 1030–1051. Web of ScienceCrossrefGoogle Scholar

  • [27]

    J. A. Tropp, J. N. Laska, M. F. Duarte, J. Romberg and R. Baraniuk, Beyond Nyquist: Efficient sampling of sparse bandlimited signals, IEEE Trans. Inform. Theory 56 (2010), no. 1, 540. Web of ScienceGoogle Scholar

  • [28]

    J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry and Y. Ma, Robust face recognition via sparse representation, IEEE Trans. Pattern Anal. Mach. Intell. 31 (2009), no. 2, 210–227. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-04-22

Revised: 2017-12-20

Accepted: 2018-02-26

Published Online: 2018-05-15


Citation Information: Advances in Pure and Applied Mathematics, ISSN (Online) 1869-6090, ISSN (Print) 1867-1152, DOI: https://doi.org/10.1515/apam-2017-0047.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in