[1]
R. Baraniuk, V. Cevher, M. F. Duarte and C. Hegde,
Model-based compressive sensing,
IEEE Trans. Inform. Theory 56 (2010), no. 4, 1982–2001.
CrossrefWeb of ScienceGoogle Scholar
[2]
R. Baraniuk, M. Davenport, R. DeVore and M. Wakin,
A simple proof of the restricted isometry property for random matrices,
Constr. Approx. 28 (2008), no. 3, 253–263.
CrossrefWeb of ScienceGoogle Scholar
[3]
R. Basri and D. W. Jacobs,
Lambertian reflection and linear subspaces,
IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003), no. 3, 218–233.
CrossrefGoogle Scholar
[4]
P. Belhumeur, J. Hespanha and D. Kriegman,
Eigenfaces versus Fisherfaces: Recognition using class specific linear projection,
IEEE Trans. Pattern Anal. Mach. Intell. 19 (1997), no. 7, 711–720.
CrossrefGoogle Scholar
[5]
T. Blumensath and M. Davies,
Iterative hard thresholding for compressed sensing,
Appl. Comput. Harmon. Anal. 27 (2009), no. 3, 265–74.
Web of ScienceCrossrefGoogle Scholar
[6]
A. Bruckstein, D. L. Donoho and M. Elad,
From sparse solutions of systems of equations to sparse modeling of signals and images,
SIAM Rev. 51 (2009), no. 1, 34–81.
CrossrefWeb of ScienceGoogle Scholar
[7]
E. Candes,
The restricted isometry property and its implications for compressed sensing,
C. R. Math. Acad. Sci. Paris 346 (2008), no. 9–10, 589–592.
CrossrefGoogle Scholar
[8]
E. Candes, J. Romberg and T. Tao,
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,
IEEE Trans. Inform. Theory 52 (2006), no. 2, 489–509.
CrossrefGoogle Scholar
[9]
E. Candes, J. Romberg and T. Tao,
Stable signal recovery from incomplete and inaccurate measurements,
Comm. Pure Appl. Math. 59 (2006), no. 8, 1207–1223.
CrossrefGoogle Scholar
[10]
A. Cohen, W. Dahmen and R. DeVore,
Compressed sensing and best k-term approximation,
J. Amer. Math. Soc. 22 (2009), no. 1, 211–231.
Google Scholar
[11]
D. L. Donoho,
Compressed sensing,
IEEE Trans. Inform. Theory 52 (2006), no. 4, 1289–1306.
CrossrefGoogle Scholar
[12]
D. L. Donoho and J. Tanner,
Counting faces of randomly projected polytopes when the projection radically lowers dimension,
J. Amer. Math. Soc. 22 (2009), no. 1, 1–53.
Google Scholar
[13]
S. Foucart,
Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants,
Approximation Theory XIII: San Antonio 2010,
Springer Proc. Math. 13,
Springer, New York (2012), 65–77.
Google Scholar
[14]
S. Foucart and H. Rauhut,
A Mathematical Introduction to Compressive Sensing,
Appl. Numer. Harmon. Anal.,
Birkhäuser, New York, 2013.
Google Scholar
[15]
J. Haupt, W. U. Bajwa, G. Raz, S. Wright and R. Nowak,
Toeplitz-structured compressed sensing matrices,
IEEE/SP 14th Workshop on Statistical Signal Processing – SSP ’07,
IEEE Press, Piscataway (2007), 294–298.
Google Scholar
[16]
F. Krahmer and R. Ward,
New and improved Johnson–Lindenstrauss embeddings via the restricted isometry property,
SIAM J. Math. Anal. 43 (2011), no. 3, 1269–1281.
Web of ScienceCrossrefGoogle Scholar
[17]
M. Ledoux and M. Talagrand,
Probability in Banach Spaces. Isoperimetry and Processes,
Ergeb. Math. Grenzgeb. (3) 23,
Springer, Berlin, 1991.
Google Scholar
[18]
K. Li and S. Cong,
State of the art and prospects of structured sensing matrices in compressed sensing,
Front. Comput. Sci. 9 (2015), no. 5, 665–677.
Web of ScienceCrossrefGoogle Scholar
[19]
S. Mendelson, A. Pajor and N. Tomczak-Jaegermann,
Uniform uncertainty principle for Bernoulli and Subgaussian ensembles,
Constr. Approx. 28 (2008), no. 3, 277–289.
CrossrefWeb of ScienceGoogle Scholar
[20]
H. Rauhut,
Random sampling of sparse trigonometric polynomials,
Appl. Comput. Harmon. Anal. 22 (2007), no. 1, 16–42.
CrossrefWeb of ScienceGoogle Scholar
[21]
H. Rauhut,
Compressive sensing and structured random matrices,
Theoretical Foundations and Numerical Methods for Sparse Recovery,
Radon Ser. Comput. Appl. Math. 9,
Walter de Gruyter, Berlin, (2010), 1–92.
Google Scholar
[22]
H. Rauhut and R. Ward,
Sparse Legendre expansions via -minimization,
J. Approx. Theory 164 (2012), no. 5, 517–533.
Web of ScienceGoogle Scholar
[23]
M. Rudelson and R. Vershynin,
On sparse reconstruction from Fourier and Gaussian measurements,
Comm. Pure Appl. Math. 61 (2008), no. 8, 1025–1045.
CrossrefGoogle Scholar
[24]
M. Talagrand,
Majorizing measures: The generic chaining,
Ann. Probab. 24 (1996), no. 3, 1049–1103.
CrossrefGoogle Scholar
[25]
J. A. Tropp,
Greed is good: Algorithmic results for sparse approximation,
IEEE Trans. Inform. Theory 50 (2004), no. 10, 2231–2242.
CrossrefGoogle Scholar
[26]
J. A. Tropp,
Just relax: Convex programming methods for identifying sparse signals in noise,
IEEE Trans. Inform. Theory 52 (2006), no. 3, 1030–1051.
Web of ScienceCrossrefGoogle Scholar
[27]
J. A. Tropp, J. N. Laska, M. F. Duarte, J. Romberg and R. Baraniuk,
Beyond Nyquist: Efficient sampling of sparse bandlimited signals,
IEEE Trans. Inform. Theory 56 (2010), no. 1, 540.
Web of ScienceGoogle Scholar
[28]
J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry and Y. Ma,
Robust face recognition via sparse representation,
IEEE Trans. Pattern Anal. Mach. Intell. 31 (2009), no. 2, 210–227.
CrossrefWeb of ScienceGoogle Scholar
Comments (0)