Jump to ContentJump to Main Navigation
Show Summary Details

Applied Bioenergy

Emerging Science

Open Access
See all formats and pricing

Anaerobic Digestion of Waste Water from Hydrothermal Carbonization of Corn Silage

1 / Jan Mumme2

1Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam, Germany / Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

2Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam, Germany

© 2013 Benjamin Wirth, Jan Mumme. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Applied Bioenergy. Volume 1, Issue 1, ISSN (Online) 2300-3553 , DOI: https://doi.org/10.2478/apbi-2013-0001, November 2013

Publication History

Published Online:


This experimental work investigates anaerobic digestion of waste water from hydrothermal carbonization of maize silage comparing a continuously stirred-tank reactor (CSTR) and an anaerobic filter (AF). Both reactors were operated for 91 days at a constant organic loading rate of 1 gCOD L-1 d-1. During the first five weeks of operation both reactors showed a removal efficiency of the chemical oxygen demand of up to 80 % and a methane production rate of up to 0.25 L L-1 d-1. Consecutively lower degradation rates were assumed to be caused by a significant lack of sulfur and phosphorus due to a precipitation by ferrous iron. Over the whole time the AF proved to be more stable. Very small concentrations of phenol compounds contained in the waste water were nevertheless degraded by up to 80 %.

Keywords : Hydrothermal carbonization; Anaerobic digestion; Waste water treatment; Biogas; Phenols


  • [1] Mumme J., Eckervogt L., Pielert J., Diakité M., Rupp F., Kern, J., Hydrothermal carbonization of anaerobically digested maize silage, Bioresour. Technol., 2011, 102, 9255-9260 [Web of Science]

  • [2] Libra J.A., Ro K.S., Kammann C., Funke A., Berge N.D., Neubauer Y., et al., Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes, and applications of wet and dry pyrolysis, Biofuels, 2011, 2, 71-106

  • [3] Berge N.D., Ro K.S., Mao J., Flora J.R.V., Chappell M.A., Bae S., Hydrothermal Carbonization of Municipal Waste Streams, Environ. Sci. Technol., 2011, 45, 5696-5703 [Web of Science]

  • [4] Koon M., Recovery of Carbon and Nutrients in Lignocellulosic Biomass during Hydrothermal Carbonization, Master’s thesis, University of Hamburg, Hamburg, Germany, 2011

  • [5] Stemann J., Ziegler F., Hydrothermal carbonization (HTC): Recycling of process water, In: Proceedings of the 19th European Biomass Conference and Exhibition (6-10 June 2011, Berlin, Germany), 2011

  • [6] Becker R., Dorgerloh U., Helmis M., Mumme J., Diakité M., Nehls I., Hydrothermally carbonized plant materials: patterns of volatile organic compounds detected by gas chromatography, Bioresour. Technol., 2012, 130, 621-628 [Web of Science]

  • [7] Meyer H., Leistungsfähigkeit anaerober Reaktoren zur Industrieabwasserreinigung, Veröffentlichungen des Institutes für Siedlungswasserwirtschaft und Abfalltechnik der Universität Hannover, Heft 128, Hannover, 2004

  • [8] Busca G., Berardinelli S., Resini C., Arrighi L, Technologies for the removal of phenol from fluid streams: A short review of recent developments, J. Hard. Mater., 2008, 160, 265-288

  • [9] Chakraborty S., Bhattacharya T., Patel T., Tiwari K, Biodegradation of phenol by native microorganisms isolated from coke processing wastewater, J. Environ. Biol., 2010, 31, 293-296

  • [10] Ramke H.G., Blöhse D., Lehmann H.J., Antonietti M., Fettig J., Machbarkeitsstudie zur Energiegewinnung aus organischen Siedlungsabfällen durch Hydrothermale Carbonisierung, Deutsche Bundesstiftung Umwelt (DBU), Höxter, 2010

  • [11] Oliveira I., Blöhse D., Ramke H.G., Hydrothermal carbonization of agricultural residues, Bioresour. Technol., 2013, 142, 138-146 [Web of Science]

  • [12] Wellinger A., Biogas-Handbuch, 2nd ed., Wirz, Aarau, 1991

  • [13] Eder B., Schulz H., Biogas Praxis - Grundlagen, Planung, Anlagenbau, Beispiele, Wirtschaftlichkeit, 3rd ed., Ökobuch, Staufen bei Freiburg, 2007

  • [14] Henze M.H., Anaerobic fluidized beds: ten years of industrial experience, Water Sci. Technol., 1983, 36, 415-422

  • [15] Speece R.E., Anaerobic Biotechnology for Industrial Wastewaters, Vanderbilt, Archae Press, Nashville, 1996

  • [16] Weiland P., Grundlagen der Methangärung - Biologie und Substrate, VDI-Bericht, 2001, 1620, 19-32

  • [17] DIN 38406-E5 - Ammonium-Stickstoff; Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Kationen (Gruppe E); Bestimmung des Ammonium-Stickstoffs (E5). Deutsches Institut für Normung (DIN), 1983

  • [18] DIN EN 25663:1993-11 - Water quality; Determination of Kjeldahl nitrogen; Method after mineralization with selenium. Deutsches Institut für Normung (DIN), 1993

  • [19] DIN EN 12879:2001-02 - Characterization of sludges - Determination of the loss on ignition of dry mass. Deutsches Institut für Normung (DIN), 2001

  • [20] DIN EN 12880:2001 - Characterization of sludges - Determination of dry residue and water content. Deutsches Institut für Normung (DIN), 2001

  • [21] Licha T., Herfort M., Sauter M., Phenolindex - ein sinnvoller Parameter für die Altlastenbewertung, Grundwasser, 2001, 1, 8-14

  • [22] Fannin K.F., Start-up, operation, stability and control, In: Chynoweth D.P., Isaacson R. (Eds.), Anaerobic Digestion of Biomass, Elsevier, London, 1987

  • [23] U.S. EPA, Anaerobic sludge digestion operations manual, sect. 4-17, U.S. Environmental Protection Agency (U.S. EPA), 1976

  • [24] VDI 4630 - Vergärung organischer Stoffe - Substratcharakterisierung, Probenahme, Stoffdatenerhebung, Gärversuche, Verein Deutscher Ingenieure (VDI), 2006

  • [25] IAPWS, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance, The International Association for the Properties of Water and Steam (IAPWS) 1992

  • [26] Vollmer G.R., Abbaugeschwindigkeit der Stoffgruppen, In: Eder, B., Schulz, H. (Eds.), Biogas Praxis - Grundlagen, Planung, Anlagenbau, Beispiele, Wirtschaftlichkeit, Ökobuch, Staufen bei Freiburg, 2007

  • [27] Azbar N., Keskin T., Yuruyen A., Enhancement of biogas production from olive mill effluent (OME) by co-digestion, Biomass Bioenerg., 2008, 32, 1195-1201 [Web of Science]

  • [28] Mumme J., Linke B., Tölle R., Novel upflow anaerobic solidstate (UASS) reactor, Bioresour. Technol., 2010, 101, 592-599

  • [29] Hamilton W., Sulphate-Reducing Bacteria and Anaerobic Corrosion, Annu. Rev. Microbiol., 1985, 39, 195-217

  • [30] Azbar N., Keskin T., Catalkaya E.C., Improvement in anaerobic degradation of olive mill effluent (OME) by chemical pretreatment using batch systems, Biochem. Eng. J., 2008, 38, 379-383 [Web of Science]

  • [31] Azbar N., Tutuk F., Keskin T., Effect of Organic Loading Rate on the Performance of an Up-Flow Anaerobic Sludge Blanket Reactor Treating Olive Mill Effluent, Biotechnol. Bioprocess Eng., 2009, 14, 99-104 [Crossref] [Web of Science]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

F. Monlau, C. Sambusiti, E. Ficara, A. Aboulkas, A. Barakat, and H. Carrère
Energy Environ. Sci., 2015, Volume 8, Number 9, Page 2600

Comments (0)

Please log in or register to comment.