Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Applied Bioenergy

Emerging Science

Open Access
See all formats and pricing
More options …

Anaerobic Digestion of Waste Water from Hydrothermal Carbonization of Corn Silage

Benjamin Wirth
  • Corresponding author
  • Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam, Germany / Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Mumme
  • Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469 Potsdam, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-11-15 | DOI: https://doi.org/10.2478/apbi-2013-0001


This experimental work investigates anaerobic digestion of waste water from hydrothermal carbonization of maize silage comparing a continuously stirred-tank reactor (CSTR) and an anaerobic filter (AF). Both reactors were operated for 91 days at a constant organic loading rate of 1 gCOD L-1 d-1. During the first five weeks of operation both reactors showed a removal efficiency of the chemical oxygen demand of up to 80 % and a methane production rate of up to 0.25 L L-1 d-1. Consecutively lower degradation rates were assumed to be caused by a significant lack of sulfur and phosphorus due to a precipitation by ferrous iron. Over the whole time the AF proved to be more stable. Very small concentrations of phenol compounds contained in the waste water were nevertheless degraded by up to 80 %.

Keywords : Hydrothermal carbonization; Anaerobic digestion; Waste water treatment; Biogas; Phenols


  • [1] Mumme J., Eckervogt L., Pielert J., Diakité M., Rupp F., Kern, J., Hydrothermal carbonization of anaerobically digested maize silage, Bioresour. Technol., 2011, 102, 9255-9260Web of ScienceGoogle Scholar

  • [2] Libra J.A., Ro K.S., Kammann C., Funke A., Berge N.D., Neubauer Y., et al., Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes, and applications of wet and dry pyrolysis, Biofuels, 2011, 2, 71-106Google Scholar

  • [3] Berge N.D., Ro K.S., Mao J., Flora J.R.V., Chappell M.A., Bae S., Hydrothermal Carbonization of Municipal Waste Streams, Environ. Sci. Technol., 2011, 45, 5696-5703Web of ScienceGoogle Scholar

  • [4] Koon M., Recovery of Carbon and Nutrients in Lignocellulosic Biomass during Hydrothermal Carbonization, Master’s thesis, University of Hamburg, Hamburg, Germany, 2011Google Scholar

  • [5] Stemann J., Ziegler F., Hydrothermal carbonization (HTC): Recycling of process water, In: Proceedings of the 19th European Biomass Conference and Exhibition (6-10 June 2011, Berlin, Germany), 2011Google Scholar

  • [6] Becker R., Dorgerloh U., Helmis M., Mumme J., Diakité M., Nehls I., Hydrothermally carbonized plant materials: patterns of volatile organic compounds detected by gas chromatography, Bioresour. Technol., 2012, 130, 621-628Web of ScienceGoogle Scholar

  • [7] Meyer H., Leistungsfähigkeit anaerober Reaktoren zur Industrieabwasserreinigung, Veröffentlichungen des Institutes für Siedlungswasserwirtschaft und Abfalltechnik der Universität Hannover, Heft 128, Hannover, 2004Google Scholar

  • [8] Busca G., Berardinelli S., Resini C., Arrighi L, Technologies for the removal of phenol from fluid streams: A short review of recent developments, J. Hard. Mater., 2008, 160, 265-288Google Scholar

  • [9] Chakraborty S., Bhattacharya T., Patel T., Tiwari K, Biodegradation of phenol by native microorganisms isolated from coke processing wastewater, J. Environ. Biol., 2010, 31, 293-296Google Scholar

  • [10] Ramke H.G., Blöhse D., Lehmann H.J., Antonietti M., Fettig J., Machbarkeitsstudie zur Energiegewinnung aus organischen Siedlungsabfällen durch Hydrothermale Carbonisierung, Deutsche Bundesstiftung Umwelt (DBU), Höxter, 2010Google Scholar

  • [11] Oliveira I., Blöhse D., Ramke H.G., Hydrothermal carbonization of agricultural residues, Bioresour. Technol., 2013, 142, 138-146Web of ScienceGoogle Scholar

  • [12] Wellinger A., Biogas-Handbuch, 2nd ed., Wirz, Aarau, 1991Google Scholar

  • [13] Eder B., Schulz H., Biogas Praxis - Grundlagen, Planung, Anlagenbau, Beispiele, Wirtschaftlichkeit, 3rd ed., Ökobuch, Staufen bei Freiburg, 2007Google Scholar

  • [14] Henze M.H., Anaerobic fluidized beds: ten years of industrial experience, Water Sci. Technol., 1983, 36, 415-422Google Scholar

  • [15] Speece R.E., Anaerobic Biotechnology for Industrial Wastewaters, Vanderbilt, Archae Press, Nashville, 1996Google Scholar

  • [16] Weiland P., Grundlagen der Methangärung - Biologie und Substrate, VDI-Bericht, 2001, 1620, 19-32Google Scholar

  • [17] DIN 38406-E5 - Ammonium-Stickstoff; Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Kationen (Gruppe E); Bestimmung des Ammonium-Stickstoffs (E5). Deutsches Institut für Normung (DIN), 1983Google Scholar

  • [18] DIN EN 25663:1993-11 - Water quality; Determination of Kjeldahl nitrogen; Method after mineralization with selenium. Deutsches Institut für Normung (DIN), 1993Google Scholar

  • [19] DIN EN 12879:2001-02 - Characterization of sludges - Determination of the loss on ignition of dry mass. Deutsches Institut für Normung (DIN), 2001Google Scholar

  • [20] DIN EN 12880:2001 - Characterization of sludges - Determination of dry residue and water content. Deutsches Institut für Normung (DIN), 2001 Google Scholar

  • [21] Licha T., Herfort M., Sauter M., Phenolindex - ein sinnvoller Parameter für die Altlastenbewertung, Grundwasser, 2001, 1, 8-14Google Scholar

  • [22] Fannin K.F., Start-up, operation, stability and control, In: Chynoweth D.P., Isaacson R. (Eds.), Anaerobic Digestion of Biomass, Elsevier, London, 1987Google Scholar

  • [23] U.S. EPA, Anaerobic sludge digestion operations manual, sect. 4-17, U.S. Environmental Protection Agency (U.S. EPA), 1976Google Scholar

  • [24] VDI 4630 - Vergärung organischer Stoffe - Substratcharakterisierung, Probenahme, Stoffdatenerhebung, Gärversuche, Verein Deutscher Ingenieure (VDI), 2006Google Scholar

  • [25] IAPWS, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance, The International Association for the Properties of Water and Steam (IAPWS) 1992Google Scholar

  • [26] Vollmer G.R., Abbaugeschwindigkeit der Stoffgruppen, In: Eder, B., Schulz, H. (Eds.), Biogas Praxis - Grundlagen, Planung, Anlagenbau, Beispiele, Wirtschaftlichkeit, Ökobuch, Staufen bei Freiburg, 2007Google Scholar

  • [27] Azbar N., Keskin T., Yuruyen A., Enhancement of biogas production from olive mill effluent (OME) by co-digestion, Biomass Bioenerg., 2008, 32, 1195-1201Web of ScienceGoogle Scholar

  • [28] Mumme J., Linke B., Tölle R., Novel upflow anaerobic solidstate (UASS) reactor, Bioresour. Technol., 2010, 101, 592-599Google Scholar

  • [29] Hamilton W., Sulphate-Reducing Bacteria and Anaerobic Corrosion, Annu. Rev. Microbiol., 1985, 39, 195-217Google Scholar

  • [30] Azbar N., Keskin T., Catalkaya E.C., Improvement in anaerobic degradation of olive mill effluent (OME) by chemical pretreatment using batch systems, Biochem. Eng. J., 2008, 38, 379-383Web of ScienceGoogle Scholar

  • [31] Azbar N., Tutuk F., Keskin T., Effect of Organic Loading Rate on the Performance of an Up-Flow Anaerobic Sludge Blanket Reactor Treating Olive Mill Effluent, Biotechnol. Bioprocess Eng., 2009, 14, 99-104 CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2013-07-18

Accepted: 2013-10-23

Published Online: 2013-11-15

Published in Print: 2014-01-01

Citation Information: Applied Bioenergy, ISSN (Online) 2300-3553 , DOI: https://doi.org/10.2478/apbi-2013-0001.

Export Citation

© 2013 Benjamin Wirth, Jan Mumme. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Maika Klemmer, René B. Madsen, Kasper Houlberg, Anders J. Mørup, Per S. Christensen, Jacob Becker, Marianne Glasius, and Bo B. Iversen
Industrial & Engineering Chemistry Research, 2016, Volume 55, Number 48, Page 12317
Barbara Weiner, Harald Wedwitschka, Juergen Poerschmann, and Frank-Dieter Kopinke
ACS Sustainable Chemistry & Engineering, 2016, Volume 4, Number 10, Page 5737
M. Toufiq Reza, Ally Freitas, Xiaokun Yang, and Charles J. Coronella
ACS Sustainable Chemistry & Engineering, 2016, Volume 4, Number 6, Page 3250
Benjamin Wirth and M. Toufiq Reza
ACS Sustainable Chemistry & Engineering, 2016, Volume 4, Number 3, Page 1673
F. Monlau, C. Sambusiti, E. Ficara, A. Aboulkas, A. Barakat, and H. Carrère
Energy Environ. Sci., 2015, Volume 8, Number 9, Page 2600

Comments (0)

Please log in or register to comment.
Log in