Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Periodica Duellatorum

1 Issue per year

Open Access
Online
ISSN
2064-0404
See all formats and pricing
More options …

Translation Memory and Computer Assisted Translation Tool for Medieval Texts

Attila Törcsvári
Published Online: 2015-12-04 | DOI: https://doi.org/10.1515/apd-2015-0008

Abstract

Translation memories (TMs), as part of Computer Assisted Translation (CAT) tools, support translators reusing portions of formerly translated text. Fencing books are good candidates for using TMs due to the high number of repeated terms. Medieval texts suffer a number of drawbacks that make hard even “simple” rewording to the modern version of the same language. The analyzed difficulties are: lack of systematic spelling, unusual word orders and typos in the original. A hypothesis is made and verified that even simple modernization increases legibility and it is feasible, also it is worthwhile to apply translation memories due to the numerous and even extremely long repeated terms. Therefore, methods and algorithms are presented 1. for automated transcription of medieval texts (when a limited training set is available), and 2. collection of repeated patterns. The efficiency of the algorithms is analyzed for recall and precision.

Keywords: natural language processing; translation memories; computer assisted translation

References

  • [i] Hannsen Lecküchner von Nurenberg [1482] “künst vnd zedel ym messer“, manuscript Google Scholar

  • [ii] Lorbeer , C., Lorbeer, J. - Heim, J., Brunner, R. - Kiermayer, A. [2006] Das ist Herr hannsen Lecküchner von Nurenberg künst vnd zedel ym messer, Wissenschaftliche Fassung mit Kennzeichnung der aufgelösten Abbreviaturen, Transkription der Fechthandschrift cgm582; revised edition January 2006 http://www.pragmatische-schriftlichkeit.de/transkription/trans_cgm582_w_d.pdf Google Scholar

  • [iii] West, J. [2008]. “Early New High German - English Dictionary” Electronic edition according to TEI P5, available at: http://www.germanstudies.org.uk/enhg_dic/enhg_dic_intro.htm Google Scholar

  • [iv] Bollmann, M. - Dipper, S. - Krasselt, J. - Petran, F. [2012], “Manual and Semi-automatic Normalization of Historical Spelling - Case Studies from Early New High German”, 2012, in Proceedings of KONVENS 2012, p. 342-350Google Scholar

  • [v] Melamed, I. D., [1996] “Automatic Construction of Clean Broad-Coverage Translation Lexicons”, in 2nd Conference of the Association for Machine Translation in the Americas (AMTA), Montreal, PQ Google Scholar

  • [vi] Melamed, I. D. [1997] “A Portable Algorithm for Mapping Bitext Correspondence”, in 35th Annual Meeting of the Association for Computational Linguistics, p. 305-312 Google Scholar

  • [vii] Vogel, S. - Ney, H. - Tillmann. C, [1996] “HMM-based word alignment in statistical translation”, in: Proceedings of COLING, pages 836-841.Google Scholar

  • [viii] Agrawal, R. - Mannila, H. -Srikant, R. - Toivonen, H, - Verkamo, A. I. [1996]“Fast discovery of association rules,” in Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, pp. 307-328. Google Scholar

  • [ix] Han, J. - Pei, J. - Yin, Y. - Mao, R. [2004] “Mining frequent patterns without candidate generation: A frequent-pattern tree approach,” in Data Min. Knowl. Discov., vol. 8, no. 1, pp. 53-87Google Scholar

About the article

Published Online: 2015-12-04

Published in Print: 2013-05-01


Citation Information: Acta Periodica Duellatorum, ISSN (Online) 2064-0404, DOI: https://doi.org/10.1515/apd-2015-0008.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in