Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Physica Slovaca

The Journal of Slovak Academy of Sciences

IMPACT FACTOR 2012: 1.333
5-year IMPACT FACTOR: 5.103
Rank 38 out of 83 journals in category Physics, Multidisciplinary in the 2012 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR): 1.009
Source Normalized Impact per Paper (SNIP): 0.800

Open Access
See all formats and pricing
More options …

New isotope technologies in environmental physics

P. Povinec
  • Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F-1, SK-84248 Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Betti
  • European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76137 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Jull
  • NSF Arizona AMS Laboratory and Departments of Physics and Geosciences, University of Arizona, Tucson, AZ 85721-0081, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Vojtyla
Published Online: 2010-07-12 | DOI: https://doi.org/10.2478/v10155-010-0088-6

New isotope technologies in environmental physics

As the levels of radionuclides observed at present in the environment are very low, high sensitive analytical systems are required for carrying out environmental investigations. We review recent progress which has been done in low-level counting techniques in both radiometrics and mass spectrometry sectors, with emphasis on underground laboratories, Monte Carlo (GEANT) simulation of background of HPGe detectors operating in various configurations, secondary ionisation mass spectrometry, and accelerator mass spectrometry. Applications of radiometrics and mass spectrometry techniques in radioecology and climate change studies are presented and discussed as well. The review should help readers in better orientation on recent developments in the field of low-level counting and spectrometry, and to advice on construction principles of underground laboratories, as well as on criteria how to choose low or high energy mass spectrometers for environmental investigations.

Keywords: Radionuclides; Depleted uranium; HPGe detectors; Liquid scintillation spectrometry; Low-level counting; Underground laboratory; Monte Carlo simulation; GEANT; In situ underwater gamma-spectrometry; Mass spectrometry; Secondary ionisation mass spectrometry; Inductively coupled plasma mass spectrometry; Thermal ionisation mass spectrometry; Resonance ionisation mass spectrometry; Accelerator mass spectrometry; Radioecology; Climate change

  • Aarkrog, A., 1971. Radioecological investigations of plutonium in an arctic marine environment. Health Phys. 20, 31-47.Google Scholar

  • Aarkrog, A., Dahlgaard, H., Nilsson, K., 1984. Further studies of Plutonium and Americium at Thule, Greenland, Health Phys. 46, 29-44.CrossrefGoogle Scholar

  • Aarnio, P. A.et al., 1990.Fluka user's guide. Technical Report TIS-RP-190, CERN, Geneva.Google Scholar

  • Alessandrello, A., Belloti, E., Cattadori, C., Camin, D., Cremonesi O., Fiorini, E., Liguori, C., Pulla, A., Rossi, L., Ragazzi, S., Sverzellati, P. P., Zanotti, L., 1986. Underground laboratory and Milano double beta decay experiment. Nucl. Instr. Methods in Phys. Res. B17, 411-417.Google Scholar

  • Alley, R. A., Clark, P. U., Keigwin, L. D. and Webb, R. S., 1999. Making sense of millennialscale climate change. In Mechanisms of global climate change at millennial time scales, 385-394, Clark, P. U. ed., Geophysics Monograph, American Geophysical Union, 112, Washington, DC.Google Scholar

  • Alley, R. B., Anandakrishnan, S., Jung, P. and Clough, A., 2001. Stochastic resonance in the North Atlantic: Further insights. In The Oceans and Rapid Climate Change: Past, Present and Future, 57-68, Seidov, D., Haupt, B. J. and Maslin, M., eds., American Geophysical Union, Washington, DC.Google Scholar

  • Allkofer, O. C., Karstensen, K., and Dau. W. D., 1971. The absolute cosmic ray muon spectrum at sea level. Phys. Lett. B36, 425-427.CrossrefGoogle Scholar

  • Allkofer, O. C., 1975.Introduction to Cosmic Radiation, Thieming, München.Google Scholar

  • Allkofer, O. C. and Grieder, P. K. F., 1984.Cosmic Rays on Earth, Physics Data 25. Kiel University.Google Scholar

  • Aoyama, M. and K. Hirose, 2008. Radiometric determination of anthropogenic radionuclides in seawater. In Analysis of Environmental Radionuclides, 137-162, P. P. Povinec, ed., Elsevier, Amsterdam.Google Scholar

  • Aoyama, M., M. Fukasawa, K. Hirose, P. P. Povinec, J. A. Sanchez-Cabeza, and D. Tsumune, 2008. Evidence for unexpected transport of pollutants from the North Pacific to the South Pacific subtropical gyre. Nature, submitted.Google Scholar

  • Arnold, J. R., W. F. Libby, 1949. Age determination by radiocarbon content: checks with samples of known age, Science 110, 678-680.Google Scholar

  • Arnold, J.,et al., 2005. Technical description and performance of the NEMO3 detector. Nucl. Instrum. Methods in Phys. Res. A536, 79-122.Google Scholar

  • Bailey, K., Chen, C. Y., Du, X., Li, Y. M., Lu, Z-T., O'Connor, T. P. & Young, L., 2000. ATTA - A new method of ultrasensitive isotope trace analysis. Nuclear Instruments and Methods in Physics Research, B 172, 224-227.Google Scholar

  • Barton, J. C., 1991. A comparison of sodium iodide and germanium low background counting systems. J. of Phys. G, 17, S415-S418.Google Scholar

  • Beck, J. W., Richards, D. A. Edwards, R. L. Silverman B. W., Smart P. L., Donahue D. J., Herrera Osterheld S., Burr G. S., Calsoyas LJull., A. J. T. and Biddulph D., 2001. Extremely large variations of atmospheric 14C concentration during the last Glacial period, Science 292, 2453-2458.Google Scholar

  • Becker, J., 2008.Inorganic Mass Spectrometry, New York, Wiley.Google Scholar

  • Beláň T., Chudý, M., Ďurana, L., Grgula, M., Holý, K., Levaiová, D., Povinec, P., Richtáriková, M., and Šivo, A., 1992. Investigation of radionuclide variations in the Bratislava air. In P. Povinec (Ed.). Rare Nuclear Processes. Singapore: World Scientific, pp. 345-366.Google Scholar

  • Benninghoven, A. F. G. Rüdenauer, H. W. Werner, 1987. Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, applications and Trends, Wiley, New York, 1987.Google Scholar

  • Bertine, K. K., Chow, T. J., Koide, M., Goldberg, E. D., 1986. Plutonium isotopes in the environment: Some existing problems and some new ocean results. Journal of Environmental Radioactivity, 3, 189.CrossrefGoogle Scholar

  • Betti, M., Tamborini, G., Koch, L., 1999. Use of secondary ion mass spectrometry in nuclear forensic analyis for the characterization of plutonium and highly enriched uranium particles. Anal. Chem., 71, 2616-2622.Google Scholar

  • Betti, M., 2003. Civil use of depleted uranium. J. Environ. Radioactivity, 64(2), 113 - 119Google Scholar

  • Betti, M, Aldave de las Heras, L., Janssens, A., Henrich, E., Hunter, G., Gerchikov, M., Dutton, M., van Weers, A. W., Nielsen, S., Simmonds, J., Bexon, A., Sazykina, T., 2004.J. Environ. Radioactivity, 74, 243-254.Google Scholar

  • Betti, M., 2005. Isotope ratio measurements by secondary ion mass spectrometry (SIMS) and flow discharge mass spectrometry (GDMS). Int. J. Mass Spectrom., 242, 169-182.Google Scholar

  • Betti, M., Aldave de las Heras, L., Tamborini, G., 2006.Applied Spectroscopy Reviews, 41, 491-514Google Scholar

  • Betti, M., M. Erikson, J. Jernström, and G. Tamborini, 2008. Anvironmental radioactive particles: A new challenge for modern analytical instrumental techniques in support of radioecology. In Analysis of Environmental Radionuclides, 355-370, P. P. Povinec, ed., Elsevier, Amsterdam.Google Scholar

  • Biddulph, D. L., 2004. Development and applications of the NSF Arizona AMS 129I program. Ph. D. thesis, University of Arizona.Google Scholar

  • Biddulph, D. L., J. W. Beck, G. S. Burr and D. J. Donahue, 2006. Two 60-year records of 129I from coral skeletons in the South Pacific Ocean. In: Radionuclides in the Environment (P. P. Povinec and J. A. Sanchez-Cabeza, eds.) Elsevier, Amsterdam, p. 592-598.Google Scholar

  • Bird, M. I. Ayliffe L. K., Fifield L. K., Turney C. S. M., Cresswell R. G., Barrows T. T., David B., 1999., Radiocarbon dating of "old" charcoal using a wet oxidation, steppedcombustion procedure, Radiocarbon 41, 127-140.CrossrefGoogle Scholar

  • Bird M. I., Fifield L. K., Santos G. M., Beaumont P. B., Zhou Y., di Tada M. I. and Hausladen P. A., 2003. Radiocarbon dating from 40 to 60ka BP at Border Cave, South Africa, Quarternary Scence. Reviews, 22 943-947.Google Scholar

  • Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I. and Bonani, G., 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278, 1257-1266.Google Scholar

  • Brodzinski, R. L., Miley, M. S., Reeves, J. H., Avignone F. T. 1990. Further reduction of radioactive backgrounds in ultra sensitive germanium spectrometers. Nucl. Instr. Methods A292, 337-342.Google Scholar

  • Brodzinski, R. L., 1991. Low-level gamma-ray spectrometry. J. Phys. G.: Nucl. Part. Phys. 17, S403-414.Google Scholar

  • Brodzinski, R. L., 2005. Next generation germanium spectrometer background reduction techniques at 2 MeV. J. Radioanal. Nucl. Chem., 264, 139-143.Google Scholar

  • Bruhn F., Duhr A., Grooter P. M., Minitrop A. and Nadeau M., 2001. Chemical removal of conservation ubstances by Soxhlet-type extraction. Radiocarbon 43, 229-237.CrossrefGoogle Scholar

  • Buesseler, K. O. and Halverson, J. E., 1987. The mass spectrometric determination of fallout 239Pu and 240Pu in marine samples. Journal of Environmental Radioactivity, 5. 425.Google Scholar

  • Buesseler, K. O. and Scholkovitz, E. R., 1987. The geochemistry of fallout plutonium in the North Atlantic: I. A pore water study in shelf, slope and deep-sea sediments. Geochimica Cosmochimica Acta, 51, 2605.CrossrefGoogle Scholar

  • Buesseler, K. O., 1993. Thermal Ionization Mass Spectrometry. In: Development and evaluation of alternative radioanalytical methods, including mass spectrometry for marine materials. IAEA-TECDOC-683, IAEA, Vienna, 45-52.Google Scholar

  • Buesseler, K. O., 1997. The isotopic signature of fallout plutonium in the North Pacific. Journal of Environmental Radioactivity, 36, 69-83.Google Scholar

  • Burnett, W. C., P. K. Aggarwal, A. Aureli, H. Bokuniewicz, J. E. Cable, M. A. Charette, E. Kontar, S. Krupa, K. M. Kulkarni, A. Loveless, W. S. Moore, J. A. Oberdorfer, J. Oliveira. N. Ozyurt, P. P. Povinec, A. M. G. Privitera, R. Rajar, R. T. Ramessur, J. Scholten, T. Stieglitz, M. Taniguchi, and J. V. Turner, 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment, 367, 498-543.Google Scholar

  • Burr, G. S., Beck J. W., Taylor, F. W., Récy J., Edwards R. L., Cabioch G., Corrège T., Donahue D. J. and O'Malley J. M., 1998. High resolution radiocarbon calibration between 11.7 and 12.4 kyr BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon, 40, 1085-1092.Google Scholar

  • Burr, G. S., C. Galang, F. W. Taylor, C. Gallup, R. L. Edwards, Kirsten Cutler and Bill Quirk, 2004. Radiocarbon results from a 13ka BP coral from the Huon Peninsula, Papua New Guinea, Radiocarbon 46, 1211-1224.CrossrefGoogle Scholar

  • Caldwell, D. O., 1991. Double beta decay experiments - present and future. J. Phys. G., 17, S137-S144.Google Scholar

  • Castagnoli G. C., Lal, D., 1980.Radiocarbon, 22, 133.CrossrefGoogle Scholar

  • CERN, 1985. Yellow Report 85-03, CERN, Geneva.Google Scholar

  • CERN, 1990.GEANT Detector Description and Simulation Tool. CERN Program Library Office. CERN, Geneva.Google Scholar

  • CERN, 1992.Particle Data Group. CERN, Geneva.Google Scholar

  • CERN, 1993.GEANT Detector Description and Simulation Tool. CERN Program Library Office. CERN, Geneva.Google Scholar

  • Chen, J. H., Edwards, R. L. & Wasserburg, G. J., 1986.238U, 234U and 232Th in seawater. Earth Planetary and Science Letters, 80, 241.Google Scholar

  • Cockburn, H. A. P. and Summerfield, M. A., 2004. Geomorphological applications of cosmogneic isotope analysis. Progress in Physical Geography, 28, 1-42.CrossrefGoogle Scholar

  • Conradson, S. D., Ilham Al Mahamid, Clark, D. L., Hess, N. J., Hudson, E. A., Neu, M. P., Palmer, Ph. D., Runde, W. H., Tait, C. D., 1998. Oxidation state determination of plutonium aquo ions using x-ray absorption spectroscopy. Polyhedron. 17, 599-602.CrossrefGoogle Scholar

  • Conradson, S. D., Abney, K. D., Begg, B. D., Drady, E. D., Clark, D. L., den Auwer, Ch., Ding, M., Dorhout, P. K., Espinosa-Faller, F. J., Gordon, P. L., Haire R. G., Hess, N. J., Hess, R. F., Keogh, D. W., Lander, G. H., Lupinetti, A. J., Morales, L. A., Neu, M. P., Palmer, Ph. D., Paviet-Hartmann, P., Reilly, S. D., Runde, W. H., Tait, C. D., Veirs, D. K., Wastin F., 2004. Higher order speciation effects on Plutonium L3 X-ray absorption near edge spectra. Inorg. Chem. 43, 116-131.Google Scholar

  • Cooper, J. A., and Perkins, R. W., 1971. An anticoincidence shielded dual Ge(Li) gamma-ray spectrometer for environmental and biological samples. Nucl. Instr. Methods 99, 125-146.Google Scholar

  • Cooper, L. W., Kelley, J. M., Bond, L. A., Orlandini, K. A. & Grebmeier, J. M., 2000. Sources of the transuranic elements plutonium and neptunium in Arctic marine sediments. Marine Chemistry, 69, 253-276.Google Scholar

  • Cumming, B. F., Laird, K. R., Bennett, J. R., Smol, J. P. and Salomon, A. K., 2002, Persistent millennial-scale shifts in moisture regimes in western Canada during the last six millennia, Proceedings of the National Academy of Sciences, USA, 99, 16117-16121.Google Scholar

  • Currie, L. A., 2008. Detection and quantification capabilities in nuclear analytical measurements. In Analysis of Environmental Radionuclides, 49-136, P. P. Povinec, ed., Elsevier, Amsterdam.Google Scholar

  • Dai, M. H., Buesseler, K. O., Kelley, J. M., Andrews, J. E., Pike, S. & Wacker, J. F., 2001. Size-fractionated plutonium isotopes in a coastal environment. Journal of Environmental Radioactivity, 53, 9-25.CrossrefGoogle Scholar

  • Damon, P. E. and C. P. Sonnett, 1991. Solar and terrestrial components of the atmospheric 14C variation spectrum. In The Sun In Time, (Sonnett, C. P., Giampapa, M. S., Matthews, M. S., eds) Tucson, Arizona: The University of Arizona Press, p. 361-388.Google Scholar

  • Danesi, P. R., Markowicz, A., Chine-Cano, E., Burkarrt, W., Salbu, B., Donohue, D., Ruedenauer, F., Hedberg, M., Vogt, S., Zahradnik, P., Ciurapinski, A., 2003. Depleted uranium particles in selected Kosovo samples. J. Environ. Radioactivity, 64(2), 143-154.Google Scholar

  • Davis, R., Harmer, D. S., Hoffman, K. C., 1966.Phys. Rev. Letters, 20, 1205CrossrefGoogle Scholar

  • Debertin, K., and Helmer, R. G., 1998.Gamma and X-Ray Spectrometry with Semiconductor Detectors. Elsevier, Amsterdam.Google Scholar

  • De Chambost, E., F. Fercocq, F. Fernandes, E. Deloule, M. Chaussidon, 1997. In: Proceedings of the International Conference on SIMS, vol. XI, New York, Wiley.Google Scholar

  • De Pater I., Lissauer, J. J., 2005. Planetary sciences, Cambridge University Press, Cambridge.Google Scholar

  • Deloule, E., F. Allegre and S. M. F. Sheppard, 1991.Earth Planet. Sci. Lett. 105, 543-553.Google Scholar

  • Dergachev, V. A., Raspopov, O. M., Damblin, F., Jungner, H. and Zaitseva, G. I., 2005. Natural climate variability in the Holocene. Radiocarbon 47, 837-854.Google Scholar

  • Dixon, P., Curtis, D. B., Musgrave, J., Roesnch, F., Roach, J. & Rokop, D., 1997. Analysis of naturally produced technetium and plutonium in geologic materials. Analytical Chemistry, 69, 1692-1699.Google Scholar

  • Donahue D. J., Jull A. J. T., Linick T. W. and Toolin L. J., 1990a. Radiocarbon measurements at the University of Arizona AMS Facility. Nuclear Instruments and Methods in Physics Research, B 52, 224-228.Google Scholar

  • Donahue D. J., Linick T. W., Jull A. J. T., 1990b. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements, Radiocarbon 32 135-142.Google Scholar

  • Dovlete, C. & Povinec, P. P., 1999. Quantification of Uncertainty in Gamma-spectrometry - a Monte Carlo Approach. Acta Physica Universitatis Comenianae, XL, 43-55.Google Scholar

  • Druffel E. R. M., Griffin, S., Hwang J., Komada T., Beupre S. R., Druffel-Rodriguez K. C., Santos G. M. and Southon J., 2004. Variability of monthly radiocarbon during the 1760s in corals from the Galapagos Islands. Radiocarbon, 46, 627-631.CrossrefGoogle Scholar

  • Dyke, A. S., Andrews J. T., Clark P. U., England J., Miller G. H., Shaw J. and Veillette J. J., 2001. Radiocarbon dates pertinent to defining the last glacial maximum for the Laurentide and Innuitian ice sheets. Geological Survey of Canada, Open File 4120, 54 pp.Google Scholar

  • Erdmann, N., Betti, M., Stetzer, O., Tamborini, G., Kratz, J. V., Trautmann, N., van Geel, J., 2000. Production of monodisperse uranium oxide particles and their characterization by scanning electron microscopy and secondary ion mass spectrometry. Spectrochim. Acta B 55, 1565-1575.Google Scholar

  • Erdmann, N., G. Passler, N. Trautmann, and K. Wendt, 2008. Resonance ionization mass spectrometry for trace analysis of long-lived radionuclides. In Analysis of Environmental Radionuclides, 331-354, P. P. Povinec, ed., Elsevier, Amsterdam.Google Scholar

  • Eriksson, M., Ljunggren, K., Hindorf, C., 2002. Plutonium hot particle separation techniques using real-time digital image systems. Nucl. Instrum. Methods Phys. Res. Sect. A. 488, 375-380.Google Scholar

  • Eriksson, M., Osán, J., Jernström, J., Wegrzynek, D., Simon, R., Chinea-Cano, E., Markowicz, S., Bamford, A., Tamborini, G., Török, S., Falkenberg, G., Alsecz, A., Dahlgaard, H., Wobrauschek, P., Streli, C., Zoeger, N., M. Betti., 2005. Source term identification of environmental radioactive Pu/U particles by their characterisation with non-destructive spectrochemical analytical techniques. Spectrochim. Acta, B60, 455-469.Google Scholar

  • Fairbanks, R. G.et al., 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quatern. Sci. Rev. 24, 1781-1796.Google Scholar

  • Fesefeldt, H. C., 1985.Simulations of Hadronic Showers, Physics and Applications. Technical Report PITHA 85-02. RWTH, Aachen.Google Scholar

  • Fiedel, S. J. And Kuzmin, Y. V., 2007. Radiocarbon date frequency as an indx of intensity of Paleolithic occupation of Siberia: Did humans react predictably to climate oscillations? RADIOCARBON, Vol. 49, Nr. 2, 2007, p 741-756Google Scholar

  • Fifield L. K., 1999. Accelerator mass spectrometry and its applications, Reports of Progress in Physics. 62. 1223-1274.Google Scholar

  • Fifield, L. K., 2008. Accelerator mass spectrometry of long-lived heavy radionuclides. In Analysis of Environmental Radionuclides, 263-295, P. P. Povinec, ed., Elsevier, Amsterdam.Google Scholar

  • Fifield, L. K., 2004. Accelerator mass spectrometry of plutonium at 300 kV. Nucl. Instr. Methods B 223, 802-806.Google Scholar

  • Fitzsimons, I. C. W., B. Harte and R. M. Clark, 2000.Mineral. Mag. 64(1), 59-65.Google Scholar

  • Gagan M. K., Ayliffe L. K., Beck J. W., Cole J. L., Druffel E. R. M., Dunbar R. and Schrag D. P., 2000. New views of tropical paleoenvironments from corals. Quaternary Science Reviews 19, 45-64.Google Scholar

  • Gaiser, T., 1990.Cosmic Rays and Particle Physics. Cambridge University Press.Google Scholar

  • Garcia-León, M., Garcia-Tenorio, eds., 1994.Low-level Measurements of Radioactivity in the Environment. World Scientific, Singapore, 563p.Google Scholar

  • Goebel T., 2002. The "microblade adaptation" and recolonization of Siberia during the late Upper Pleistocene. In: Elston RG, Kuhn SL, editors. Thinking Small: Global Perspectives on Microlithization. Arlington, Virginia: American Anthropological Association., p 117, 31.Google Scholar

  • Goslar T., Arnold M., Tisnérnat-Laborde N., Hatté C., Paterne M. and Ralska-Jasiewiczowa M., 2000. Radiocarbon calibration by means of varves versus 14 C ages of terrestrial macrofossils from Lake Gociaz and Lake Perespilno, Poland. Radiocarbon, 42, 403-414.CrossrefGoogle Scholar

  • Graf, K. E., 2005. Abandonment of the Siberian mammothsteppe during the LGM: evidence from the calibration of 14C-dated archaeological occupations. Current Research in the Pleistocene 22:25.Google Scholar

  • Grajcar, M., M. Döbeli, P. W. Kubik, C. Maden, M. Suter, H. A. Synal, 2004.10Be measurements with terminal voltages below 1MV, Nucl. Instrum. and Methods in Phys. Res. B. 223-224, 190-194.Google Scholar

  • Hallett, D. J. and Walker, R. C., 2000. Paleoecology and its application to fire and vegetation management in Kootenay National Park, British Columbia, Journal of Paleolimnology, 24, 401-414.CrossrefGoogle Scholar

  • Hallett, D. J., Lepofksy, D. S., Mathewes R. W. and Lertzman, K. P., 2003. 11,000 years of fire history and climate in the mountain hemlock rain forests of southwestern British Columbia based on sedimentary charcoal, Canadian Journal of Forest Research, 33, 292-312.Google Scholar

  • Hatté C., Morvan J., Noury C. and Paterne M., 2001. Is classical acid-alkali-acid treatment responsible for contamination? An alternative proposition. Radiocarbon 43, 177-182CrossrefGoogle Scholar

  • Hatté C. and Jull A. J. T., 2007. Radiocarbon dating: Plant macrofossils. In "Encyclopedia of Quaternary Science" (ed. S. Elias), Elsevier: Amsterdam. Pp. 2958-2965Google Scholar

  • Hatté C., Hodgins, G., Jull, A. J. T., Bishop, B. And Tesson, B., 2008. Marine chronology based on 14C dating of diatom proteins. Marine Chemistry 109: 143-151.Google Scholar

  • Haynes C. V., 1984. Stratigraphy and Late Pleistocene extinctions in the United States. In Martin P. S. and Klein R. G. (eds), Quaternary Extinctions, Tucson: University of Arizona Press.Google Scholar

  • Haynes C. V., 1991. Geoarchaeological and paleohydrological evidence for a Clovis-age drought in North America and its bearing on extinction. Quaternary Research, 35, 438-450.Google Scholar

  • Haynes C. V., 1992. Contributions of radiocarbon dating to the geochronology of the peopling of the New World. In: Taylor R. E., Long A. and Kra R. S. (eds) Radiocarbon after four decades. New York: Springer-Verlag.Google Scholar

  • Heusser, G., Hampel, W., Hübner, M., 1982. Low-level instrumentation of the Max-Planck-Institut für Kernphysik. In: Low-level Counting, 127-134, P. Povinec, Usav, S. eds., VEDA, Bratislava.Google Scholar

  • Heusser, G., 1992. Progress in Ge-spectrometry at the Max-Planck-Institut für Kernphysik Heidelber. In P. Povinec (Ed.). Rare Nuclear Processes. Singapore: World Scientific, pp. 247-255.Google Scholar

  • Heusser, G., 1993. Cosmic ray-induced background in Ge-spectrometry. Nucl. Instrum. Methods B83, 223-228.Google Scholar

  • Heusser, G., 1994. Background in ionising radiation detection. In: M. Garcia-Leon, R. Garcia-Tenorio (Eds.), Low-Level Measurements of Radioactivity in the Environment. Singapore, World Scientific, 69-112.Google Scholar

  • Heusser, G., 1995. Low-radioactivity background techniques. Ann. Rev. Nuclear Part. Sci. 45, 543-590.CrossrefGoogle Scholar

  • Heusser, G., Laubenstein, M. and Neder, H., 2006. Low-level germanium gamma-ray spectrometry at the μBq/kg level and future developments towards higher sensitivity. In P. P. Povinec and J. A. Sanchez-Cabeza (Eds.), Radionuclides in the Environment, Amsterdam, Elsevier, pp. 495-510.Google Scholar

  • Hodgins, G. W. L. and Jull, A. J. T., 2004. Radiocarbon dating of petroleum-impregnated bone from Tar Pits using the ninhydrin reaction. Abstract, 34thInternational Symposium on Archaeometry, 3-7 May 2004 Zaragoza, Spain.Google Scholar

  • Holm, E., Jerome, S., Hurtgen, C., eds., 2000.Proceedings of the ICRM Low-level Radioactivity Measurement Techniques Conference. Applied Rad. Isotopes, 410p.Google Scholar

  • Hou, X., 2008. Activation analysis for the determination of long-lived radionuclides. In Analysis of Environmental Radionuclides, 370-406, P. P. Povinec, ed., Elsevier, Amsterdam.Google Scholar

  • Hughen K. A., Baillie M. G. L., Bard E., Beck J. W., Bertrand C. J., Blackwell P. G., Buck C. E., Burr G. S., Cutler K., Damon P. E., Edwards R. L., Fairbanks R., Friedrich M., Guilderson T. P., Kromer B., McCormac G., Manning S., Bronk Ramsey C., Reimer P. J., Reimer R. W., Remmele S., Southon J. R., Stuiver M., Tamalo S., Taylor F. W., van der Plicht J. and Wehenmeyer C. E., 2004. MARINE04 Radiocarbon age calibration 0-26 ka cal BP. Radiocarbon, 46, 1059-1086.Google Scholar

  • Hughey, B., R. E. Klinkowstein, R. E. Shefer, P. L. Skipper, S. R. Tannenbaum, J. S. Wishnok, 1997. Design of a compact 1 MV AMS system for biomedical research, Nuclear Instrum. Methods Phys. Res. B 123, 153-158.Google Scholar

  • Hult, M., Martinez Canet, M. J., Koehler, M., Das Neves, J., and Johnston, P. N., 2000. Recent developments in ultra low-level γ-ray spectrometry at IRMM. Appl. Radiation Isotopes, 53, 225-230.Google Scholar

  • Hult, M., Gasparro, J., Marissens, G., Lindahl P., Waetjen, U., Johnston, P., Wagemans, C., Koehler, M., 2006. Underground search for the decay of 180Ta. Phys. Rev. C 74, 054311.Google Scholar

  • Inkret, W. C., Efurd, D. W., Miller, G., Rokop, D. J. & Benjamin, T. M., 1998. Applications of thermal ionization mass spectrometry to the detection of 239Pu and 240Pu intakes. International Journal of Mass Spectrometry 178, 113-120.Google Scholar

  • Inn, K. G. W., McCurdy, D., Bell III, T., Loesch, R., Morton J. S., Povinec, P., Burns, K., Henry, R. and Barss, N. M., 2001. Standard, intercomparisons and performance evaluations for low-level and environmental radionuclide mass spectrometry and atom counting. Journal of Radioanalytical and Nuclear Chemistry, 249, 1, 109-113.Google Scholar

  • ISO, International Standardisation Organisation, 1996. Quality system guidelines for the production of reference materials. Guide 34. ISO/IEC, Geneva.Google Scholar

  • ISO, International Standardisation Organisation, 1997. Proficiency Testing and Interlaboratory Comparisons, Guide 43 1. ISO/IEC, Geneva.Google Scholar

  • Ito, M., H. Nagasawa and H. Yurimoto, 2004.Geochim. Cosmochim. Acta 68, 2905-2923.Google Scholar

  • JERN, 2003.Journal of Environmental Radioactivity, 64, 87-259 (special issue on depleted uranium).Google Scholar

  • Jernström, J.; Eriksson, M., Osán, J., Tamborini, G.; Török, S.; Simon, R.; Falkenberg, G.; Alsecz, A.; Betti, M., 2004. Non-destructive characterisation of low radioactive particles from Irish Sea sediment by micro X-ray synchrotron radiation techniques: micro X-ray fluorescence (μ-XRF) and micro X-ray absorption near edge structure (μ-XANES) spectroscopy, J. Anal. At. Spectrom., 19, 1428-1433.Google Scholar

  • Jones D. G., 2001. Development and application of offshore gamma-ray spectrometry measurements: a review. Journal of Environmental Radioactivity, 53, 313-333.Google Scholar

  • Jones, R. H., L. A. Leeshin, Y. Guan, Z. D. Sharp, T. Durakiewicz, A. J. Schilk, 2004.Geochim. Cosmochim. Acta 68, 3423-3438.)Google Scholar

  • Jull, A. J. T., C. V. Haynes, Jr., D. J. Donahue, G. S. Burr and J. W. Beck, 1999. Radiocarbon ages of early man in the New World and the influence of climate change. Proc. 3rd International Conference "Archaeologie et 14C" (eds. J. Evin et al.), Lyon, France, 6-10 April, 1998, Revu d'Archaeometrie, Suppl. 1999 et Soc. Préhist. Fr. Mémoire no. 26, p. 339-343.Google Scholar

  • Jull, A. J. T., D. J. Donahue, G. S. Burr, J. W. Beck, L. R., McHargue, A. L. Hatheway, T. E. Lange, J. M. O'Malley and D. Biddulph, 2002. Radiocarbon and other radionuclide studies using accelerator mass spectormetry. In: Tenth ISMAS Workshop on Mass Spectometry. S. K. Aggarwal and D. Alamelu, eds. Indian Society of Mass Spectrometry, Mumbai, India. p. 25-34.Google Scholar

  • Jull, A. J T., G S. Burr, J. W. Beck, D. J. Donahue, D. Biddulph, A. L. Hatheway, T. E. Lange and L. R. McHargue, 2003. Accelerator mass spectrometry at Arizona: Geochronology of the climate record and connections with the ocean. Journal of Environmental Radioactivity, 69, 3-19.Google Scholar

  • Jull, A. J. T., G. S. Burr, L. R. McHargue, T. E. Lange, N. A. Lifton, J. W. Beck and D. J. Donahue, 2004. New Frontiers in Dating of Geological, Paleoclimatic and Anthropological applications using accelerator mass spectrometric measurements of 14C and 10Be in diverse samples. Global and Planetary Change, 41, 309-323.Google Scholar

  • Jull, A. J. T. and Burr, G. S., 2006. Accelerator Mass Spectrometry: Is the future bigger or smaller? Earth and Planetary Science Letters, 243, 305-325.Google Scholar

  • Jull, A. J. T, Geertsema, M., 2006. Forest fire frequency over the last 16,500 years in northern British Columbia determined from AMS radiocarbon dating of charcoal and sediments. Radiocarbon 48, 435-456.Google Scholar

  • Jull, A. J. T., G. S. Burr, J. W. Beck, G. W. L. Hodgins, D. L. Biddulph, L. R. McHargue, and T. E. Lange, 2008. Accelerator mass spectrometry of long-lived light radionuclides. In Analysis of Environmental Radionuclides, 240-262, P. P. Povinec, ed., Elsevier, Amsterdam.Google Scholar

  • Kalin, R. M., Long, A., 1989. Radiocarbon dating with the Quantulus in an underground counting laboratory: Performance and background sources. Radiocarbon 31, 359-367.CrossrefGoogle Scholar

  • Kaye, J. H., Brauer, F. P., Conally, R. E., Rieck, H. G., 1972. Background reductions obtained with gamma-detectors by use of massive cosmic-ray shielding. Nucl. Instr. Methods 100, 333-348.Google Scholar

  • Keeling, C. D., S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and H. A. Meijer, 2005. Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, 83-113, J. R. Ehleringer, T. E. Cerling, M. D. Dearing, eds., Springer Verlag, New York.Google Scholar

  • Kershaw, P. J., McCubbin, D. & Leonard, K. S., 1999. Continuing contamination of north Atlantic and Arctic waters by Sellafield radionuclides. The Science of the Total Environment, 237/238, 119-132.Google Scholar

  • Key, R. M., 1996. WOCE Pacific Ocean Radiocarbon Program. Radiocarbon 38, 3, 415-423.CrossrefGoogle Scholar

  • Kim, L., Pratt, R. H., Seltzer, S. M., and Berger, M. J., 1986.Phys. Rev A 33, 3002.Google Scholar

  • Klapdor-Kleingrothaus, H. V.et al., 2004. Data acquisition and analysis of the 76Ge double beta experiment in Gran Sasso 1990-2003. Nucl. Instrum. Methods in Phys. Res. A522, 371-407.Google Scholar

  • Klimenko, A. A., Pomansky, A. A., Smolnikov, A. A., 1986. Low background scintillation installation for double beta decay experiments. Nucl. Instrum. Methods in Phys. Res. B17, 445-449.CrossrefGoogle Scholar

  • Kobayashi Y., Takahashi R., Shima S., Katagiri M., and Takahashi K., 1998. Development of a submersible Ge gamma-ray detector system. In Int. Symp. on Marine Pollution, 530-531, IAEA, Vienna.Google Scholar

  • Kolb, W. A., 1988. Background reduction of a semi-planar Ge(HP) detector. Environment International, 14, 367-370.CrossrefGoogle Scholar

  • Komura, K. and Hamajima, Y., 2004. Y. Ogoya underground laboratory for the measurement of extremely low levels of environmental radioactivity: review of recent projects carried out at OUL. Appl. Rad. Isotopes 61, 185-190.Google Scholar

  • Kozlowski, T., W. Bertlm, H. P. Powell, U. Sennhauser, H. K. Walter, A. Zglinski, A. Engler, C. H. Grab, E. A. Hermes, H. P. Isaak, A. Van Der Schaaf, J. Van Der Pluym, and W. H. A. Hesselink, 1985. Energy spectra and asymmetries of neutrons emitted after muon capture. Nucl. Phys. A436, 717-732.Google Scholar

  • Kutschera, W., Golser, R., Priller, A and Strohmeier, B., eds., 2000. Accelerator Mass Spectrometry. Proceedings of the 8th International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods in Physics Research, B, 172, 997 pp.Google Scholar

  • Kutschera, W., 2005. Progress in isotope analysis at ultra-trace level by AMS. International Journal of Mass Spectrometry, 242, 145-160.Google Scholar

  • Lal, D., 1957. Ph. D. Thesis, Banaras Hindu University, Varanasi.Google Scholar

  • LANL, 1986.MCNP Code. Los Alamos National Laboratory, Los Alamos.Google Scholar

  • Laubenstein, M., Hult, M., Gasparro, J., Arnold, D., Neumaier, S., Heusser, G., Kohler, M., Povinec, P. P., Reyss, J-L., Schwaiger, M. and Theodorsson, P., 2004. Underground measurements of radioactivity. Appl. Rad. Isotopes 61, 167-172.Google Scholar

  • Lee, S-H., Gastaud, J., La Rosa, J. J., Liong Wee Kwong, L., Povinec, P. P., Wyse, E., Fifield, L. K., Hausladen, P. A., De Tada, L. M. and Santos, G. M., 2001. Analysis of plutonium isotopes in marine samples by radiometric, ICP-MS and AMS techniques. Journal of Radioanalytical and Nuclear Chemistry, 248, 3, 757-764.Google Scholar

  • Lee, S. H., P. P. Povinec, E. Wyse and M. A. C. Hotchkis, 2008. Ultra-low-level determination of 236U in IAEA marine reference materials by ICPMS and AMS. Applied Radiation and Isotopes, submitted.Google Scholar

  • Lefèvre, O.; Betti, M.; Koch, L.; Walker, C. T., 1996. EMPA and mass spectrometry of soil and grass containing radioactivity from the nuclear accident at Chernobyl, Mikrochimica Acta, 13, 399-408.Google Scholar

  • León Vintro, L.et al., 1996. Determination of the 240Pu/239Pu atom ratio in low activity environmental samples by alpha- spectrometry and spectral deconvolution. Nucl. Instr. Meth. A369, 597-602.Google Scholar

  • Lertzman, K., Gavin, D., Hallett, D., Brubaker, L., Lepofsky, D. and Mathewes, R., 2002. Long-term fire regime estimated from soil charcoal in coastal temperate rain forests, Conservation Ecology, 6 (2), paper 5 [on-line journal].Google Scholar

  • Leshin, L. A., A. E. Rubin and K. D. McKeegan, 1997. Geochim. Cosmochim. Acta, 61, 835-845.Google Scholar

  • Lewis, D., Miller, G., Duffy, C. J., Efurd, D. W., Inkret, W. C. & Wagner, S. E., 2001. Los Alamos National Laboratory thermal ionisation mass spectrometry results from intercomparison study of inductively coupled plasma mass spectrometry, thermal ionization mass spectrometry, and fission track analysis of μBq quantities of 239Pu in synthetic urine (LA-UR-001698). J. Radioanal. Nuclear Chemistry, 249, 115-120.Google Scholar

  • Libby W. F., 1955.Radiocarbon Dating. University of Chicago Press, Chicago.Google Scholar

  • Lind, O. C., Salbu, B., Janssens, K., Proost, K., Dahlgaard, H., 2005.J. Envioronmental Rad. 81, 21-32.Google Scholar

  • Lindström, R. M, Lindström, D. J., Slaback, L. A., Langland, J. K., 1990. A low background gamma-ray assay laboratory for activation analysis. Nucl. Instrum. Methods A299, 425-429.Google Scholar

  • Liong Wee Kwong, L., La Rosa, J., Lee, S-H. and Povinec, P. P., 2001. Liquid scintillation spectrometry of beta-emitters in marine samples. Journal of Radioanalytical and Nuclear Chemistry, 248, 3, 751-755.Google Scholar

  • Litchfield et al., 1991. First results from the Soudan proton decay experiment. J. Phys. G, 17, S393-S402.Google Scholar

  • Long, C. J., Whitlock, C., Bartlein, P. J. and Millspaugh, S. H., 1998. A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study, Canadian Journal of Forest Research, 28, 774-787.Google Scholar

  • Loosli, H. H., Moll, M., Oeschger, H and Schotterer, U., 1986. Ten years low-level counting in the underground laboratory in Bern, Switzerland. Nucl. Instrum. Meth. Phys. Res. B 17, 402-405.Google Scholar

  • Lyon, I. C., J. M. Saxton, P. J. McKeever, E. Chatzitheodoridis, P. Van Lierde, 1995Int. J. Mass Spectrom. Ion Processes, 9, 1-16.CrossrefGoogle Scholar

  • Macášek, F., 2008. Sampling techniques. In Analysis of Environmental Radionuclides, 17-48, P. P. Povinec, ed., Elsevier, Amsterdam.Google Scholar

  • Markgraf, V., 2001.Interhemispheric climate linkages. New York: Academic Press.Google Scholar

  • Martin, P. S. and Klein, R. G., 1984.Quaternary Extinctions: A Prehistoric Revolution. Tucson: University of Arizona Press.Google Scholar

  • Martineau, O., et al., 2004. Calibration of the EDELWEISS cryogenic heat-andionisation germanium detector for dark matter search. Nucl. Instrum. Methods in Phys. Res. A530, 426-439.Google Scholar

  • McGeehin, J., G. S. Burr, A. J. T. Jull, D. Reines, J. Gosse, P. T. Davis, D. Muhs and J. Southon, 2001. Stepped-combustion 14C dating of sediment. Radiocarbon 43(2A), 255-262.CrossrefGoogle Scholar

  • McGeehin, J., G. S. Burr, G. Hodgins, S. J. Bennett, J. A. Robbins, N. Morehead and H. Markewich, 2004. Stepped-combustion 14C dating of bomb carbon in lake sediment. Radiocarbon, 46, 893-900.CrossrefGoogle Scholar

  • McHargue L. R., Damon P. E. and Donahue D. J., 1995. Enhanced cosmic-ray production of 10Be coincident with the Mono Lake and Laschamp geomagneitc excursions. Geophysical Research Letters, 22, 659-662.Google Scholar

  • McHargue L. R., Donahue D. J., Damon P. E., Sonett C. P., Biddulph D. and Burr G. S., 2000. Geomagnetic modulation of the late Pleistocene cosmic-ray flux as determined by 10Be from Blake Outer Ridge sediments, Nuclear Instruments and. Methods in Physic Research, B 172, 555-561.Google Scholar

  • McHargue L. R., Donahue D. J., 2005.Earth and PlanetaryScience Lett., 232, 193-207.Google Scholar

  • McMahon, C. A., Vintró, L. L., Mitchell, P. I., Dahlgaard, H., 2000. Oxidation state distribution of plutonium in surface and subsurface waters at Thule, northwest Greenland, Appl. Radiat. Isot. 52, 697-703.Google Scholar

  • McNichol, A. P., A. J. T. Jull and G. S. Burr, 2001. Converting AMS data to radiocarbon values: considerations and conventions. Radiocarbon, 43, 313-320.CrossrefGoogle Scholar

  • Meltzer, D. J., Grayson, D. K., Ardila, G., Barker, A. W., Dincauze, D. F., Haynes, D. V., Mena, F., Nuñez, L. A. and Stanford, D. J., 1997. On the Pleistocene antiquity of Monte Verde, southern Chile. American Antiquity, 62, 659-663.CrossrefGoogle Scholar

  • Meyer, G. A., Wells, S. G. and Jull, A. J. T., 1995. Fire and alluvial chronology in Yellowstone National Park: Climatic and intrinsic controls on Holocene geomorphic processes, Geological Society of America Bulletin, 107, 1211-1230.Google Scholar

  • Meyer, G. A., Pierce, J. L., Wood, S. H. and Jull, A. J. T., 2001. Fire, storms and erosional events in the Idaho batholith, Hydrological Processes, 15, 3025-3038.CrossrefGoogle Scholar

  • Michel, R., 2001. Environmental radioactivity measuring methods. In: Radioactive Pollutants. (Brechignac, F. & Hoeard B. J, Eds.). EDP Sciences, Les Ulis. 27-62.Google Scholar

  • Morales, A., 1991. Searching for rigth-handed current couplings in 76Ge double beta decays. J. Phys G, 17, S203-S210.Google Scholar

  • Moring, M., Ikäheimonen, T. K., Pöllänen, R., Ilus, E., Klemola, S., Juhanoja, J., Eriksson, M., 2001. Uranium and Plutonium containing particles in a sea sediment sample from Thule, Greenland., J. Radioanal. Nucl. Chem. 248, 623-627.Google Scholar

  • Morita, M., 1973.Beta Decay and Muon Capture. Reading: Benjamin.Google Scholar

  • Muramatsu, Y., Hamilton, T., Uchida, S., Tagami, K., Yoshida, S. & Robison, W., 2001. Measurement of 240Pu/239Pu isotopic ratios in soils from the Marshall Islands using ICPMS. The Science of the Total Environment, 278, 151-159.Google Scholar

  • Neder, H., Heusser, G. & Laubenstein, M., 2000. Low-level gamma-ray germanium spectrometer to measure very low primordial radionuclide concentrations. Appl. Radiat. Isotopes 53, 191-195.Google Scholar

  • Neff, U., Burns, S. J., Mangini, A., Mudelsee, M., Fleitmann, D., Matter A., 2001. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411(6835):290-3.Google Scholar

  • Nelson D. E., 1991 A new method for carbon isotopic analysis of protein. Science, 251, 552-554.Google Scholar

  • Neumaier, S., Arnold, D., Böhm, J. and Funck, E., 2000. The PTB underground laboratory for dosimetry and spectrometry. Appl. Radiat. Isotopes 53, 173-178.Google Scholar

  • Niese, S., Köhler, M. and Gleisberg, B., 1998. Low-level counting techniques in the underground laboratory Felsenkeller, Dresden. J. Radioanal. Nucl. Chem. 233, 167-172.Google Scholar

  • Niese, S., 2008. Underground laboratories for low-level radioactivity measurements. In Analysis of Environmental Radionuclides, 209-240, P. P. Povinec, ed., Elsevier, Amsterdam.Google Scholar

  • Nuñez, L. A., Varela, J., Casamiquela, R. and Villagrán, C., 1994. Reconstrucción multidisciplinaria de la occupación prehistórica de Quereo, Centro de Chile. Latin American Antiquity, 5, 99-118.CrossrefGoogle Scholar

  • Osvath, I., Povinec P. P., and M. S. Baxter, M. S., 1999a. Kara Sea radioactivity assessment. Sci. Total Environ. 237/238, 167-179.Google Scholar

  • Osvath, I., Povinec, P. P., Huynh-Ngoc, L., and Comanducci, J-F., 1999b. Underwater gamma surveys of Mururoa and Fangataufa lagoons. Sci. Total Environ. 237/238, 277-286.Google Scholar

  • Osvath, I., and Povinec, P. P., 2001. Seabed γ-ray spectrometry: applications at IAEA-MEL. J. Environ. Radioact., 53, 335-349.Google Scholar

  • Osvath, I., P. P. Povinec, H. D. Livingston, T. P. Ryan. S. Mulsow, and J. F. Comanducci, 2005. Monitoring of radioactivity in NW Irish Sea water using a stationary underwater gamma-ray spectrometer with satellite data transmission. Journal of Radioanalytical and Nuclear Chemistry 263, 437-440.Google Scholar

  • Pagava, S. Burchuladze, A., Robakidze, T., Rusetski, L., Tsintsadze, D., Povinec, P., Chudý, M., and Staníček, J., 1992. Tbilisi underground laboratory. In Rare Nuclear Processes, 300-304, P. Povinec, ed., World Scientific, Singapore.Google Scholar

  • Perna, L., Jernström, J., Aldave de las Heras, L, Hrnecek, E., de Pablo, J., Betti, M., 2005. Characterization of Irish Sea radioactively contaminated marine sediment core by radiometric and mass spectrometric techniques. J. Radioanal. Nucl. Chem., 263, 367-373.Google Scholar

  • Pham, M. K., Sanchez-Cabeza, J. A., Povinec, P. P.,et al., 2006. Certified reference material for radionuclides in fish flesh sample IAEA-414 (mixed fish from the Irish Sea and North Sea). Appl. Rad. Isotopes 64, 1253-1259.Google Scholar

  • Pham. M. K., Sanchez-Cabeza, J. A., Povinec, P. P.et al., 2008. Certified Reference Material IAEA-385 (Irish Sea sediment). Applied Radiation and Isotopes, in print.Google Scholar

  • Pettersson, H., Ballestra, S., Gastaud, J., Povinec, P. P., 2000. Report on the Worldwide Intercomparison IAEA-315. Radionuclides in the Arabian Sea sediment. Run and Reference Material IAEA-384, Radionuclides in Fangataufa Lagoon Sediment. IAEA/MEL/68, Vienna, 2000, 43p.Google Scholar

  • Pierce J. L., Meyer G. A., Jull A. J. T., 2004. Fire-induced erosion and millennialscale climate change in northern ponderosa pine forests. Nature, 432, 87-90.Google Scholar

  • Pigati J., Quade J., Wilson J., Jull A. J. T. and Lifton N. A., 2006. Development of lowbackground vacuum extraction and graphitization systems for 14C dating of old (40-60 ka) samples. Quaternary International 166, 4-14.Google Scholar

  • Plastino, W., Kaihola, L., 2006. Radiocarbon measurement by liquid scintillation spectrometry at the Gran sasso National laboratory. In: In P. P. Povinec and J. A. Sanchez-Cabeza (Eds.), Radionuclides in the Environment, Amsterdam, Elsevier, pp. 520-528.Google Scholar

  • Pomansky, A. A., 1986. Underground low background laboratories of the Baksan Neutrino Observatory. Nucl. Instr. Methods in Phys. Res. B17, 406-410.Google Scholar

  • Povinec P., 1978. Multiwire proportional counters for low-level 14C and 3H counting, Nucl. Instr. Methods 156, 441-445.Google Scholar

  • Povinec, P., ed., 1982a. Low-Level Counting. Proc. of the Second International Conference, Low Radioactivities '80. VEDA, Bratislava, 434 pp.Google Scholar

  • Povinec, P. P., 1982b. Dual parameter gamma-ray spectrometer for low-level counting. Isotopenpraxis 18, 423-428.Google Scholar

  • Povinec, P., ed., 1986. Low-level Counting. Proc. Third International Conference, Low Radioactivities '85. Nucl. Instr. Meth. Phys. Res., B17, 377-588.Google Scholar

  • Povinec, P., ed., 1987. Low-Level Counting and Spectrometry. Proceedings of the Third International Conference, Low Radioactivities '85. VEDA, Bratislava, 308 pp.Google Scholar

  • Povinec, P., ed., 1991a. Rare Nuclear Decays and Fundamental Physics. Proc. 14th Europhysics Conference on Nuclear Physics. Journal of Physics G., 17, 543 pp.Google Scholar

  • Povinec, P., 1991b. Low-level Gas Counting. In: Proceedings of the Second International Summer School. (Garcia-Leon, M. & Madurga, G., Eds). World Scientific, Singapore. 38-72.Google Scholar

  • Povinec, P., 1992. Rare Nuclear Processes. Proc. 14th Europhysics Conference on Nuclear Physics. World Scientific, Singapore. 441 pp.Google Scholar

  • Povinec, P., 1994. Underground low-level counting. In: Low-level Measurements of Radioactivity in the Environment, 113-140. M. Garcia-Leon, M. Garcia-Tenorio, eds., World Scientific, Singapore.Google Scholar

  • Povinec, P. P., ed., 1999. Marine Environment - Understanding and Protecting for the Future. Sci. Total. Environm. 237/238, 1-526.Google Scholar

  • Povinec, P. P., 2004. Developments in analytical technologies for marine radionuclide studies. In: Marine Radioactivity, 237-294, H. D. Livingston, ed., Elsevier, Amsterdam.Google Scholar

  • Povinec, P. P., 2005. Ultra sensitive radionuclide spectrometry: Radiometrics and mass spectrometry synergy. J. Radioanal. Nuclear Chemistry, 261, 413-417.Google Scholar

  • Povinec, P. P., ed., 2008. Analysis of Environmental Radionuclides, Elsevier, Amsterdam, in print.Google Scholar

  • Povinec, P., S. Usačev, eds., 1977. Low-radioactivity Measurements and Applications. Proceedings of the International Conference. SPN, Bratislava. 542 pp.Google Scholar

  • Povinec, P. P., Osvath, I., and Baxter, M. S., 1996. Underwater gamma-spectrometry with HPGe and NaI (Tl) detectors, Appl. Radiat. Isot. 47, 1127-1133.Google Scholar

  • Povinec, P. P., Osvath, I., Baxter, M. S. Harms, I., Huynh-Ngoc, L., Liong Wee Kwong, L., and Pettersson, H. B. L., 1997. IAEA-MEL's contribution to the investigation of Kara Sea radioactivity and radiological assessment, Marine. Poll. Bull. 35, 235-241.Google Scholar

  • Povinec, P. P., Woodhead, D., Blowers, P., Bonfield, Cooper, M., Chen, Q. J., Dahlgaard, H., Dovlete, C., Fox, V., Froehlich, K., Gastaud, J., Gröning, M., Hamilton, T., Ikeuchi, Y., Kanisch, G., Krüger, A., Liong Wee Kwong, L., Matthews, M., Morgenstern, U., Mulsow, S., Pettersson, H. B. L., Smedley, P., Taylor, B., Taylor C., and Tinker, R., 1999. Marine Radioactivity Assessment of Mururoa and Fangataufa Atolls. Sci. Total Environ. 237/238, 249-267.Google Scholar

  • Povinec, P. P. and Pham, M. K., 2000. Report on the Intercomparison Run IAEA-384. Radionuclides in Fangataufa Lagoon sediment. IAEA/AL/126. IAEA, Vienna.Google Scholar

  • Povinec, P. P., La Rosa, J. J., Lee, S. H., Mulsow, S., Osvath, I., and Wyse, E., 2001. Recent developments in radiometric and mass spectrometry methods for marine radioactivity measurements. J. Radioan. & Nuc. Chem., 248, 713-718.Google Scholar

  • Povinec, P. P., Badie, C., Baeza, A., Barci-Funel, G., Bergan, T. D., Bojanowski, R., Burnett, W., Eikenberg, J., Fifield, L. K., Serradell, V., Gastaud, J., Goroncy, I., Herrmann, J., Hotchkis, M. A. C., Ikaheimonen, T. K., Jakobson, E., Kalimbadjan, J., La Rosa, J. J., Lee, S-H., Liong Wee Kwong, L., Lueng, W. M., Nielsen, S. P., Noureddine, A., Pham, M. K., Rohou, J-N., Sanchez-Cabeza, J. A., Suomela, J., Suplinska, M. and Wyse, E., 2002. Certified Reference Material for radionuclides in seawater IAEA-381 (Irish Sea water). Journal of Radioanalytical and Nuclear Chemistry 251, 369-374.Google Scholar

  • Povinec, P. P.et al., 2003a. IAEA'97 expedition to the NW Pacific Ocean - results of oceanographic and radionuclide investigations of the water column. Deep-Sea Research II, 50, 2607-2638.Google Scholar

  • Povinec, P. P., Bailly du Bois, P., Kershaw, P. J., Nies, H., Scotto, P., 2003b. Temporal and spatial trends in the distribution of 137Cs in surface waters of Northern European Seas - a record of 40 years of investigations. Deep Sea Res. II50, 2785-2802.Google Scholar

  • Povinec, P. P., Comanducci, J. F., and Levy-Palomo, I., 2004. IAEA-MEL's underground counting laboratory in Monaco - background characteristics of HPGe detectors with anticosmic shielding. Appl. Rad. Isotopes 61, 85-93.Google Scholar

  • Povinec, P. P. and Sanchez-Cabeza, eds., 2006. Radionuclides in the Environment, Elsevier, 646 p.Google Scholar

  • Povinec, P. P., Comanducci, J. F., and Levy-Palomo, I., 2006a. IAEA-MEL's underground counting laboratory - The design and main characteristics. In Radionuclides in the Environment, 538-553, P. P. Povinec and J. A. Sanchez-Cabeza, eds., Elsevier, Amsterdam.Google Scholar

  • Povinec, P. P., P. K. Aggarwal, A. Aureli, W. C. Burnett, E. A. Kontar, K. M. Kulkarni, W. S. Moore, R. Rajar, M. Taniguchi, J.-F. Comanducci, G. Cusimano, H. Dulaiova, L. Gatto, M. Groening, S. Hauser, I. Levy-Palomo, B. Oregioni, Y. R. Ozorovich, A. M. G. Privitera, and M. A. Schiavo, 2006b. Characterisation of submarine groundwater discharge offshore south-eastern Sicily. Journal of Environmental Radioactivity, 89, 81-101.CrossrefGoogle Scholar

  • Povinec, P. P. et al., 2007. Reference material for radionuclides in sediment IAEA-384 (Fangataufa Lagoon sediment). Journal of Radioanalytical and Nuclear Chemistry, 273, 383-393.Google Scholar

  • Povinec, P. P., M. Aoyama, M. Fukusawa, K. Hirose, K. Komura, J.-A. Sanchez-Cabeza, J. Gastaud, M. Ješkovský, I. Levy-Palomo, and I. Sýkora, 2008a. Profiles of 137Cs in South Indian Ocean water along the 20°S latitude - an evidence for accumulation of pollutants in the subtropical gyre. Progress in Oceanography, submitted.Google Scholar

  • Povinec, P. P., H. Bokuniewicz, W. C. Burnett, J. Cable, M. Charette, W. S. Moore, J. A. Oberdorfer, J. de Oliveira, T. Stieglitz, M. Taniguchi, 2008b. Isotope tracing of submarine groundwater discharge offshore Ubatuba, Brazil: Results of the IAEA-UNESCO SGD project, Journal of Environmnetal Radioactivity, submitted.Google Scholar

  • Povinec, P. P., Betti, M., Lee, S. H., et al., 2008c. Evidence for the presence of enriched uranium particles in Mediterranean sediment, in preparation.Google Scholar

  • Rebollo N. R., Cohen-Ofri I., Popovitz-Biro R., Bar-Yosef O., Meignen L., Goldberg P., Weiner S. and Boaretto E., 2008. Stuctural characterization of charcoal exposed to high and low pH: Implications for 14C sample preparation and charcoal preservation. Radiocarbon, in press.Google Scholar

  • Reimer, P. J., 2004. IntCal04 Calibration issue. Radiocarbon 46, 1029-1304.Google Scholar

  • Reimer, P. J., M. G. Baillie, E. Bard, A. Bayless, J. W. Beck, P. G. Blackwell, C. E. Buck. G. S. Burr, K. Cutler, P. E. Damon, R. L. Edwards, R. Fairbanks, M. Friedrich, T. P. Guilderson, C. Herring, K. A. Hughen, B. Kromer, G. McCormac, S. Manning, C. Bronk Ramsey, R. W. Reimer, S. Remmele, J. R. Southon, M. Stuiver, S. Tamalo, F. W. Taylor, J. van der Plicht C. E. Wehenmeyer, 2005. IntCal04 Terrestrial radiocarbon calibration 0-26 ka cal BP. Radiocarbon, 46, 1029-1058.Google Scholar

  • RPP, 1994. Review of Particle Properties. Physical Review D50, 1173.Google Scholar

  • Reyss, J.-L., Schmidt, S., Legeleux, F. & Bonté, P., 1995. Large, low background well-type detectors for measurements of environmental radioactivity. Nucl. Instrum. Methods A357, 391-397.Google Scholar

  • Richards, D. A. and J. W. Beck, 2001. Dramatic shifts in radiocarbon dating the last glacial period. Antiquity, 75, 482-485.Google Scholar

  • Riciputi, L. R., Cole, D. R., Machel, H. G., 1996. Sulfide formation in reservoir carbonates of the Devonian Nisku Formation, Alberta, Canada: An ion microprobe study. Geochimica et Cosmochimica Acta 60 (2), pp. 325-336.CrossrefGoogle Scholar

  • Riciputi, L. R., Paterson, B. A., Ripperdan, R. L., 1998. Measurement of light stable isotope ratios by SIMS: Matrix effects for oxygen, carbon, and sulfur isotopes in minerals, International Journal of Mass Spectrometry 178 (1-2), pp. 81-112.Google Scholar

  • Ro, C.-U., Osán, J., Szalóki, I., de Hoog, J., Worobiec, A., Van Grieken, R., 2003. A Monte Carlo program for quantitative electron-induced X-ray analysis of individual particles, Anal. Chem. 75, 851-859.CrossrefGoogle Scholar

  • Roos, P., 2008. Analysis of radionuclides using ICPMS. In Analysis of Environmental Radionuclides, 295-330, P. P. Povinec, ed., Elsevier, Amsterdam.Google Scholar

  • Saito, M., Iwamoto, S, Sumino, T., 2000. Tritium concentration in Aquatic environment determined by SPE tritium enrichment apparatus. In Distribution and Speciation of Radionuclides in the Environment, 130-132. J. Inaba, S. Hisamatsu, Y. Ohtouka, eds., IES, Rokkasho.Google Scholar

  • Salbu, B., 2001. Actinides associated with particles. In: Plutonium in the Environment A. Kudo, ed., Oxford, Elsevier, p. 121-138.Google Scholar

  • Salbu, B., Janssens, K., Lind, O. C., Proost, K., Danesi, P. R., 2003. Oxidation states of uranium in DU particles from Kosovo. J. Environ. Radioact., 64(2), 167-173.Google Scholar

  • Salbu, B., Janssens, K., Lind, O. C., Proost, K., Gijsels, L. Danesi, P. R., 2005. Oxidation states of uranium in DU particles from Kuwait. J. Environ. Radioact., 78, 125-135.Google Scholar

  • Schlosser, P.et al., 1999. Pathways and residence times of dissolved pollutants in the ocean derived from transient tracers and stable isotopes. Science of the Total Environment 237/238, 15-30.Google Scholar

  • Schmidt, A., G. S. Burr, F. W. Taylor, J. O'Malley and J. W. Beck, 2004. A semiannual radiocarbon record of a modern coral from the Solomon Islands, Nuclear Instruments and Methods in Physics Research, B223, 420-427.Google Scholar

  • Schumacher, M., F. Fernandes, E. de Chambost, 2004. Appl. Surf. Science 231-232, 878-882.Google Scholar

  • Schramm, A., Stein, M., Golstein, S. I., 2000. Calibration of the 14C time scale to over 40 ka by 234U/230Th dating of Lake Lisan sediments. Earth Planet. Sci. Lett. 175, 27-40.Google Scholar

  • Schroettner, T., Schwaigerm M. and Kindl, P., 2004. Optimization of an active cosmic veto shielding. Applied Radiation and Isotopes 61, 133-138.Google Scholar

  • Schröder, W. U., Jahnke, U., Lindenberger, K. H., Röschert, G., Engfer, R. & Walter, H. K., 1974. Z. Physik 268, 57.Google Scholar

  • Schwaiger, M., Edelmaier, R., Holm, E., Jerome, S., eds., 2004. Low-Level Radionuclide Measurement Techniques - ICRM. Applied Rad. Isotopes, 419p.Google Scholar

  • Scott, E. M., and Ph.M. Dixon, 2008. Statistical sampling design for radionuclides. In Analysis of Environmental Radionuclides, P. P. Povinec, ed., Elsevier, Amsterdam, in print.Google Scholar

  • Seltzer, S. M. and Berger, M. J., 1985. Nucl. Instr. Methods, B12, 95.CrossrefGoogle Scholar

  • Semkow, T. M., Parekh, P. P., Schwenker, C. D., Khan, A. J., Bari, A., Colaresi, J. F., Tench, O. K., David, G. and Guryn, W., 2002. Low-background gamma spectrometry for environmental radioactivity. Appl. Rad. Isotopes 57, 213-223.Google Scholar

  • Simons, D. S., 1986. Single particle standards for Isotopic measurements of Uranium by Secondary Ion Mass Spectrometry, J. Trace Microprobe Tech., 4, 185-195.Google Scholar

  • Skog, G., 2007. The single stage AMS machine at Lund University: Status report. Nuclear Instruments and Methods in Physics Research, B259, 1-6.Google Scholar

  • Slodzian, G.et al., 2001. EPJ Appl. Phys. 14 (3), 199-231.Google Scholar

  • Smith, P. F. and Levin, D. J., 1990. Dark matter detection. Physics Reports 187, 203-280.Google Scholar

  • SNO Collaboration, 2005. A search for periodicities in the 8B solar neutrino flux measured by the Sudbury Neutrino Observatory, Phys. Rev. D 72, 052010.Google Scholar

  • Southon, J., G. Santos, K. Druffel-Rodriguez, E. Druffel, S. Trumbore, X. Xu, S. Griffin, S. Ali, M. Mazon, 2004. The Keck Carbon Cycle AMS Laboratory, University of California, Irvine: initial operation and a background surprise, Radiocarbon 46, 41-49.CrossrefGoogle Scholar

  • Staníček, J. and Povinec, P. P., 1986. Internal pair production in alpha-decaying nuclei and gamma-ray intensities of 241Am. Nucl. Instr. Methods B17, 462-466.Google Scholar

  • Sternheimer, R. M., 1971. Phys. Rev. B3, 3681.CrossrefGoogle Scholar

  • Stoffels, J. J.; Briant, J. K.; Simons, D. S., 1994. A Particulate Isotopic Standard of Uranium and Plutonium in an Aluminosilicate Matrix, J. Am. Soc. Mass Spectrom. 5, 852-858.Google Scholar

  • Stuiver, M. and Kra, R., eds., 1993. Calibration issue. Radiocarbon 35, 1-244.Google Scholar

  • Stuiver, M., and van der Plicht, J., eds., 1998. INTCAL98: Calibration issue. Radiocarbon 40, 1041-1159.Google Scholar

  • Suter, M., Jacob St. and Synal, H.-A, 1997. AMS of 14C at low energies, Nuclear Instrum. Methods Phys. Res. B 123, 148-152.Google Scholar

  • Suter, M., Jacob, S. W. A. and Synal, H. A., 2000. Tandem AMS at sub-MeV energies. Nuclear Instrum. Methods Phys. Res. B 172, 144-151.Google Scholar

  • Suzuki, T., Maesday, D. F. and Roalsvik, J. P., 1987. Phys. Rev C35, 2212.Google Scholar

  • Sýkora, I. and Povinec, P. P., 1986. Measurement of electron capture to positron emission ratios in light and medium nuclides. Nucl. Instr. Methods, B17, 467-471.Google Scholar

  • Sýkora, I., Ďurčík, M., Staníček, J. and Povinec, P. P., 1992. Radon problem in low-level gamma-ray spectrometry. In: P. P Povinec (Ed.). Rare Nuclear Processes. World Scientific, Singapore, pp. 321-326.Google Scholar

  • Synal, H. A., Stocker, M., Sutter, M., 2006. MICADAS: a new compact radiocarbon AMS system. 60-61. In Proc. 10th Intern. AMS Conference, UCLA, Berkeley.Google Scholar

  • Tamborini, G.; Betti, M.; Forcina, V.; Hiernaut, T.; Koch, L., 1998. Application of Secondary Ion Mass Spectrometry to the identification of single particles of Uranium and their isotopic composition, Spectrochimica Acta, B53, 1289-1302.Google Scholar

  • Tamborini. G., Donohue, D. L., Rudenauer, F. G., Betti, M., 2004. Evaluation of practical sensitivity and useful ion yield for uranium detection by secondary ion mass spectrometry. J. Anal. At. Spectrom. 19, 203-208.Google Scholar

  • Tamborini, G., Betti, M., 2000. Characterisation of radioactive particles by SIMS. Mikrochim. Acta, 132, 411-417.Google Scholar

  • Tamborini, G., Phinney, D., Bildstein, O., Betti, M., 2002. Oxygen Isotopic Measurements by Secondary Ion Mass Spectrometry in Uranium Oxide Microparticles: A Nuclear Forensic Diagnostic. Anal. Chem., 74, 6098-6101.Google Scholar

  • Taylor, R. E., 2000. The contribution of radiocarbon dating to New World archaeology. Radiocarbon 42, 1-21.Google Scholar

  • Taylor, R. N., Croudace, I. W., Warwick, P. E. & Dee, S. J., 1998. Precise and rapid determination of 238U/235U and uranium concentration in soil samples using thermal ionisation mass spectrometry. Chem. Geology, 144, 73.Google Scholar

  • Theodorsson, P., 1996. Measurement of Weak Radioactivity. World Scientific, Singapore, 333 p.Google Scholar

  • Tisnérat-Laborde, N., Valadas, H., Kaltnecker, E. and Arnold M., 2003. AMS radiocarbon dating of bones at LSCE. Radiocarbon, 45, 409-419.Google Scholar

  • Török, S., J. Osán, L. Vincze, S. Kurunczi, G. Tamborini, M. Betti, 2004. Spectrochim. Acta B 59, 689-699.Google Scholar

  • Treichel, M., Boehm, F., Broggini, C., Reusser, D., Fisher, P., Fluri, L., Gabathuler, K., Henrikson, H., Joergens, V., Mitchell L. W., Nussbaum, C., Vuilleumier, J.-L., 1991. Double beta decay and dark matter in the Gotthard germanium experiment. J. Phys. G, 17, S193-S201.Google Scholar

  • Tuniz C, Bird J. R., Fink D. and Herzog G. F., 1998. Accelerator Mass Spectrometry: Ultrasensitive analysis for global science, CRC Press, Boca Raton, 371pp.Google Scholar

  • Turcq, B., Siffedine, A., Martin, L., Absy, M. L., Soubies, F., Suguio, K. and Volkmer-Ribeiro, C., 1998. Amazonia rainforest fires: A lacustrine record of 7000 years, Ambio 27, 139-142.Google Scholar

  • Tyler, A. N., 2008. In situ and airborne gamma-ray spectrometry. In Analysis of Environmental radionuclides, 407-448, ed. P. P. Povinec. Elsevier, Amsterdam.Google Scholar

  • UNSCEAR, 1993. Sources and Effects of Ionizing radiation. United Nations, New York, 922p.Google Scholar

  • Van der Plicht, J.et al., 2004. NOTCALO4-comparison calibration 14C records 26-50 cal kyr BP. Radiocarbon 46, 1225-1238.Google Scholar

  • Van Put, P., Debauche, A., De Lellis, C. and Adam, V., 2004. Performance level of an autonomous system of continuous monitoring of radioactivity in seawater. Journal of Environmental Radioactivity, 72, 177-186.Google Scholar

  • Vojtyla, P. Beer, J. and Stavina, P., 1994. Experimental and simulated cosmic muon induced background of a Ge spectrometer equipped with a top side anticoincidence proportional chamber. Nucl. Instrum. Methods B86, 380-386.Google Scholar

  • Vojtyla, P., 1995. A computer simulation of the cosmic-muon background induction in a Ge γ-spectrometer using GEANT. Nucl. Instr. Methods, B100, 87-96.CrossrefGoogle Scholar

  • Vojtyla, P., 1996. Influence of shield parameters on cosmic-muon induced backgrounds of Ge γ-spectrometers. Nucl. Instr. Methods, B111, 163-170.Google Scholar

  • Vojtyla, P. and Povinec, P. P., 2000. A Monte Carlo simulation of background characteristics of low-level HPGe detectors. Appl. Rad. Isotopes 53, 185-190.Google Scholar

  • Vojtyla, P. and Povinec, P. P., 2006. Monte Carlo simulation of the muon-induced background of an anti-Compton gamma-ray spectrometer placed in a surface and underground laboratory. In: Radionuclides in the Environment, 529-537, P. P. Povinec and J. A. Sanchez-Cabeza, eds., Elsevier, Amsterdam.Google Scholar

  • Watt, D. E. and Ramsden, D., 1964. High Sensitivity Counting Techniques. Pergamon, Oxford.Google Scholar

  • Wedekind, Ch., Schilling, G., Grüttmüller, M. and Becker, K., 2000. Marine environmental radioactivity monitoring by "in-situ" radiation detection. Kerntechnik, 65, 190-194.Google Scholar

  • Wendt, K., Trautmann, N. & Bushaw, B. A., 2000. Resonant laser ionization mass spectrometry: An alternative to AMS? Nucl. Instr. Meth. Phys. Res., B 172, 162-169.Google Scholar

  • White, F. A. & Wood, G. M., 1988. Mass spectrometry - Applications in Science and Engineering. Wiley-Interscience, New York.Google Scholar

  • Wyse, E., Lee, S. H., La Rosa, J., Povinec, P. P., de Mora, S. J., 2001. ICP sector field mass spectrometry analysis of plutonium isotopes: recognizing and resolving potential interferences. J. Anal. At. Spectrom. 16, 1107-1111.Google Scholar

  • Zdesenko, Y., 1991. Double beta decay experiment at Kiev. Journal of Physics G, 17, S243-S250.Google Scholar

  • Zvara, I., Povinec, P. P. and Sýkora, I., 1994. Determination of very low-levels of radioactivity. Pure and Appl. Chem. 66, 12, 2537-2586.CrossrefGoogle Scholar

About the article

Published Online: 2010-07-12

Published in Print: 2008-02-01

Citation Information: Acta Physica Slovaca. Reviews and Tutorials, Volume 58, Issue 1, Pages 1–154, ISSN (Online) 1336-040X, ISSN (Print) 0323-0465, DOI: https://doi.org/10.2478/v10155-010-0088-6.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

R. Breier, V.B. Brudanin, P. Loaiza, F. Piquemal, P.P. Povinec, E. Rukhadze, N. Rukhadze, and I. Štekl
Journal of Environmental Radioactivity, 2018, Volume 190-191, Page 134
Miloslava Baginova, Pavol Vojtyla, and Pavel P. Povinec
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018
Pavel P. Povinec
Journal of Radioanalytical and Nuclear Chemistry, 2018

Comments (0)

Please log in or register to comment.
Log in