Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Applied Rheology

Editor-in-Chief: Fischer, Peter / Kröger, Martin

IMPACT FACTOR 2018: 0.959
5-year IMPACT FACTOR: 1.023

CiteScore 2018: 0.86

SCImago Journal Rank (SJR) 2018: 0.267
Source Normalized Impact per Paper (SNIP) 2018: 0.521

Open Access
See all formats and pricing
More options …
Volume 23, Issue 1


The Effect of Temperature on the Rheological Behavior of Polyethylene Oxide (Peo) Solutions

Mohamed Ilies Bahlouli
  • Institut de Mécanique des Fluides et des Solides, Université de Strasbourg-CNRS, 2 rue Boussingault, 67000 Strasbourg, France
  • Université des Sciences et de Technologie d’Oran – Mohamed Boudiaf (USTO) Ouled Madhi, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karim Bekkour
  • Corresponding author
  • Institut de Mécanique des Fluides et des Solides, Université de Strasbourg-CNRS, 2 rue Boussingault, 67000 Strasbourg, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adel Benchabane
  • Laboratoire de Génie Energétique et Matériaux (LGEM), Université de Biskra, B.P. 145 R.P. 07000 Biskra, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yacine Hemar / Ali Nemdili
  • Université des Sciences et de Technologie d’Oran – Mohamed Boudiaf (USTO) Ouled Madhi, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-06-07 | DOI: https://doi.org/10.3933/applrheol-23-13435


The rheological properties of polyethylene oxide (PEO) solutions were investigated, at different temperatures, using small and large deformation rheological methods. Steady-state flow measurements showed that the flow behavior of the PEO solutions is well described by the Cross model, which yields the critical concentrations c* (from the dilute regime to semidilute regime) and c** (from the semi-dilute regime to the concentrated regime). In the range of the temperatures investigated here, the apparent viscosity is found to obey the Arrhenius equation below a critical temperature we believe corresponds to the cloud point temperature. Above the cloud point temperature, the viscosity increased with temperature. Similarly below the cloud point, both transient and dynamic tests showed that PEO solutions exhibit viscoelastic behavior, where both the elastic G’ and viscous G” modules increased with the increase in concentration and with the decrease in temperature. The Cox-Merz rule was found to apply to the PEO solutions at temperatures lower than the cloud point temperature, whilst divergence was reported after phase separation. The frequencies at which G’ = G”, i.e. the reciprocal of the relaxation times of the temporary polymer network, was found to increase (the relaxation times decline) with decreasing polymer concentration, in agreement with the relaxation times, derived from the Cross model. In essence, this study demonstrates that it is possible to monitor accurately the cloud point temperature of PEO solutions by viscometric analysis.

Keywords: Poly(ethylene oxide); temperature-dependent rheology; cloud point temperature; overlap critical concentration; relaxation time


  • [1] Bailey FE, Koleske JV:Poly(ethylene oxide), Academic Press, New York (1976).Google Scholar

  • [2] Toms BA: Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers, Proc. of the 1st International Congress on Rheology, North-Holland, Amsterdam (1949).Google Scholar

  • [3] Kobets G: Explanation of the Toms effect in terms of the viscosity anisotropy of the solution, J. Appl. Mech. Tech. Phys. 10 (1969) 108 - 112.Google Scholar

  • [4] Khoultchaev K: Temperature dependent behavior of polyethylene oxide in papermaking suspensions, AIChE J 43 (1997) 2353 - 2358.CrossrefGoogle Scholar

  • [5] Muller R, Bouquey M, Mauguiere F, Schlatter G, Serra C, Terrisse J: Rheology of reactive polymer blends: separation of mixing and reaction steps, Appl. Rheol. 11 (2001) 141 - 152.CrossrefGoogle Scholar

  • [6] Powell R, Schwarz W: Rheological properties of aqueous poly (ethylene oxide) solutions in parallel superposed flows, Trans. Soc. Rheol. 19 (1975) 617 - 643.Google Scholar

  • [7] Powell RL, Schwarz WH: Rheological Properties of Aqueous Poly(ethylene Oxide) Solutions in Parallel Superposed Flows, J. Rheol. 19 (1975) 617 - 643.Google Scholar

  • [8] Powell R, Schwarz W: Nonlinear dynamic viscoelasticity, J. Rheol. 23 (1979) 323 - 352.Google Scholar

  • [9] Molyneux P:Water-soluble synthetic polymers: properties and behavior: CRC Press, Boca Raton (1983).Google Scholar

  • [10] Lance-Gomez E, Ward T: Viscoelastic character of poly (ethylene oxide) in aqueous solutions: Effect of shear rate, concentration, salt, and anionic surfactant, J. Appl. Polymer Sci. 31 (1986) 333 - 340.Google Scholar

  • [11] Oliveira MSN, Yeh R, McKinley GH: Iterated stretching, extensional rheology and formation of beadson- a-string structures in polymer solutions, J. Non- Newtonian Fluid Mech. 137 (2006) 137 - 148.Google Scholar

  • [12] Ortiz M, De Kee D, Carreau PJ: Rheology of concentrated poly(ethylene oxide) solutions, J. Rheol. 38 (1994) 519 - 539.CrossrefGoogle Scholar

  • [13] Rodd LE, Scott TP, Cooper-White JJ, McKinley GH: Capillary break-up rheometry of low-viscosity elastic fluids, Appl. Rheol. 15 (2005) 12 - 27.CrossrefGoogle Scholar

  • [14] Kwon KC, Park YK, Floyd T, Vahdat N, Jackson E, Jones P: Rheological Characterization of Shear- Thinning Fluids with a Novel Viscosity Equation of a Tank-tube Viscometer, Appl. Rheol. 17 (2007) 51413.Google Scholar

  • [15] Briscoe B, Luckham P, Zhu S: Rheological study of poly (ethylene oxide) in aqueous salt solutions at high temperature and pressure, Macromolecules 29 (1996) 6208 - 6211.CrossrefGoogle Scholar

  • [16] Gentile L, De Luca G, Antunes FE, Rossi CO, Ranieri GA: Thermogelation analysis of F127-water mixtures by physical chemistry techniques, Appl. Rheol. 20 (2010) 52081.1 - 9.Google Scholar

  • [17] Abraham T, Ratna D, Siengchin S, Karger Kocsis J: Rheological and thermal properties of poly (ethyleneoxide)/multiwall carbon nanotube composites, J. Appl. Polymer Sci. 110 (2008) 2094 - 2101.Google Scholar

  • [18] Gauri V, Koelling KW: Extensional rheology of concentrated poly(ethylene oxide) solutions, Rheol. Acta 36 (1997) 555 - 567.Google Scholar

  • [19] Kalashnikov VN: Shear-rate dependent viscosity of dilute polymer solutions, J. Rheol. 38 (1994) 1385 - 1403.CrossrefGoogle Scholar

  • [20] Hashmi S, Kitano T: Effects of state change of liquid crystalline polymer on dynamic visco-elasticity of its blends with polyethylene-terephthalate, Appl. Rheol. 17 (2007) 64510.Google Scholar

  • [21] Dong A, Zhai Y, Xiao L, Qi H, Tian Q, Deng L, Guo R: Thermosensitive behavior of poly(ethylene glycol)/ poly(2-(N,N-dimethylamino)ethyl metha - crylate) double hydrophilic block copolymers, J. Polymer Sci. B: Polymer Phys. 48 (2010) 503 - 508.CrossrefGoogle Scholar

  • [22] Bain MK, Bhowmik M, Maity D, Bera NK, Ghosh S, Chattopadhyay D: Control of thermo reversible gelation of methylcellulose using polyethylene glycol and sodium chloride for sustained delivery of ophthalmic drug, J. Appl. Polymer Sci. 118 (2010) 631 - 637.Google Scholar

  • [23] Antunes FE, Gentile L, Tavano L, Rossi CO: Rheological Characterization of the Thermal Gelation of Poly (n-isopropyl-acrylamide) and Poly (n-isopropylacrylamide) Co-acrylic Acid Gum Hydrogels, Appl. Rheol. 19 (2009) 42064.Google Scholar

  • [24] Persson J, Johansson HO, Tjerneld F: Biomolecule separation using temperature-induced phase separation with recycling of phase-forming polymers, Ind. Eng. Chem. Res. 39 (2000) 2788 - 2796.Google Scholar

  • [25] James DF, Saringer JH: Flow of dilute polymer solutions through converging channels, J. Non- Newtonian Fluid Mech. 11 (1982) 317 - 339.Google Scholar

  • [26] Tirrell M: Phase behavior of flowing polymer mixtures, Fluid Phase Equilibria 30 (1986) 367 - 380.CrossrefGoogle Scholar

  • [27] Klenin VI, Kolnibolotchuk NK, Solonina NA: Phase analysis of the system poly (ethylene oxide)- water in a hydrodynamic field, Polymer Sci. 35 (1993) 552 - 554.Google Scholar

  • [28] Ataman M: Properties of aqueous salt solutions of poly(ethylene oxide). Cloud points, q temperatures, Colloid Polymer Sci. 265 (1987) 19 - 25.Google Scholar

  • [29] Sharma R, Bahadur P: Effect of additives on the cloud point of a polyethylene oxidepolypropylene oxide-polyethylene oxide block copolymer in aqueous solution, J. Surf. Deter. 5 (2002) 263 - 268.Google Scholar

  • [30] Patel K, Bahadur P, Guo C, Ma JH, Liu HZ, Yamashita Y, Khanal A, Nakashima K: Salt induced micellization of very hydrophilic PEO-PPO-PEO block copolymers in aqueous solutions, Eur. Polymer J. 43 (2007) 1699- 1708.CrossrefGoogle Scholar

  • [31] Inoue T, Misono T: Cloud point phenomena for POE-type nonionic surfactants in a model room temperature ionic liquid, J. Colloid Interface Sci. 326 (2008) 483 - 489.Google Scholar

  • [32] Inoue T, Misono T: Cloud point phenomena for POE-type nonionic surfactants in imidazoliumbased ionic liquids: Effect of anion species of ionic liquids on the cloud point, J. Colloid Interface Sci. 337 (2009) 247 - 253.Google Scholar

  • [33] Pang P, Englezos P: Kinetics of the aggregation of polyethylene oxide at temperatures above the polyethylene oxide-water cloud point temperature, Colloids Surf. A: Physicochem. Eng. Aspects 204 (2002) 23 - 30.Google Scholar

  • [34] Ebagninin KW, Benchabane A, Bekkour K: Rheological characterization of poly(ethylene oxide) solutions of different molecular weights, J. Colloid Interface Sci. 336 (2009) 360 - 367.Google Scholar

  • [35] Graessley WW: Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power, Polymer 21 (1980) 258 - 262.Google Scholar

  • [36] Benchabane A: Rheological behavior study of a clay-polymer mixture: Effects of polymer addition, Ph.D. Thesis, Université de Strasbourg (2006).Google Scholar

  • [37] Clasen C, Kulicke W-M: Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives, Prog. Polymer Sci. 26 (2001) 1839 - 1919.CrossrefGoogle Scholar

  • [38] Dunstan DE, Hill EK, Wei Y: Direct measurement of polymer segment orientation and distortion in shear: semi-dilute solution behavior, Polymer 45 (2004) 1261 - 1266.CrossrefGoogle Scholar

  • [39] Benchabane A, Bekkour K: Rheological properties of Carboxymethylcellulose (CMC) solutions, Colloid Polymer Sci. 286 (2008) 1173 - 1180.Google Scholar

  • [40] Li H, Hou W, Zhang Y: Rheological properties of aqueous solution of new exopolysaccharide se - creted by a deep-sea mesophilic bacterium, Carbohyd. Polymers 84 (2011) 1117 - 1125.Google Scholar

  • [41] Liu W-H, Yu TL, Lin H-L: Shear thickening behavior of dilute poly(diallyl dimethyl ammonium chloride) aqueous solutions, Polymer 48 (2007) 4152 - 4165.CrossrefGoogle Scholar

  • [42] Cross MM: Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems, J. Colloid Sci. 20 (1965) 417 - 437.Google Scholar

  • [43] Aluigi A, Vineis C, Varesano A, Mazzuchetti G, Ferrero F, Tonin C: Structure and properties of keratin/ PEO blend nanofibres, Eur. Polymer J. 44 (2008) 2465 - 2475.CrossrefGoogle Scholar

  • [44] Daoust H, St-Cyr D: Microcalorimetric study of poly (ethylene oxide) in water and in waterethanol mixed solvent, Macromolecules 17 (1984) 596 - 601.CrossrefGoogle Scholar

  • [45] Malcolm G, Rowlinson J: The thermodynamic properties of aqueous solutions of polyethylene glycol, polypropylene glycol and dioxane, Trans. Faraday Soc. 53 (1957) 921 - 931.Google Scholar

  • [46] Kjellander R, Florin E: Water structure and changes in thermal stability of the system poly (ethylene oxide)-water, J. Chem. Soc., Faraday Trans. 177 (1981) 2053 - 2077.Google Scholar

  • [47] Chopra D, Haynes C, Hatzikiriakos SG, Vlasso - poulos D: Modeling the shear-induced structural changes in polymeric fluids, J. Non-Newtonian Fluid Mech. 82 (1999) 367 - 385.Google Scholar

  • [48] Rangel-Nafaile C, Metzner AB, Wissbrun KF: Analysis of stress-induced phase separations in polymer solutions, Macromolecules 17 (1984) 1187 - 1195.CrossrefGoogle Scholar

  • [49] Bodvik R, Dedinaite A, Karlson L, Bergstrom M, Baverback P, Pedersen JS, Edwards K, Karlsson G, Varga I, Claesson PM: Aggregation and network formation of aqueous methylcellulose and hy - dro xypropylmethylcellulose solutions, Colloids Surf. A: Physicochem. Eng. Aspects 354 (2010) 162 - 171.Google Scholar

  • [50] Saeki S, Kuwahara N, Nakata M, Kaneko M: Upper and lower critical solution temperatures in poly (ethylene glycol) solutions, Polymer 17 (1976) 685 - 689.Google Scholar

  • [51] Wolf B: Improvement of polymer solubility: Influence of shear and of pressure, Pure Appl. Chem. 69 (1997) 929 - 933.Google Scholar

  • [52] Inokuchi K: Rheology of Surface Films. IV. Viscoelastic Properties of 6-Nylon Films at Air/Water Interface, Bull. Chem. Soc. Japan 20 (1955) 453.CrossrefGoogle Scholar

  • [53] Klein J, Luckham PF: Forces between two ad sor - bed poly (ethylene oxide) layers in a good aqueous solvent in the range 0- 150 nm, Macromolecules 17 (1984) 1041 - 1048.Google Scholar

  • [54] Briscoe B, Luckham P, Zhu S: Pressure influences upon shear thickening of poly (acrylamide) solutions, Rheol. Acta 38 (1999) 224 - 234.Google Scholar

  • [55] Cox WP, Merz EH: Correlation of dynamic and steady flow viscosities, J. Polymer Sci. 28 (1958) 619 - 622.CrossrefGoogle Scholar

  • [56] Kulicke W, Porter R: Relation between steady shear flow and dynamic rheology, Rheol. Acta 19 (1980) 601 - 605.Google Scholar

  • [57] Alves VD, Freitas F, Costa N, Carvalheira M, Oliveira R, Gonçalves MP, Reis MAM: Effect of tem perature on the dynamic and steady-shear rheology of a new microbial extracellular polysaccharide produced from glycerol byproduct, Carbohyd. Polymers 79 (2010) 981 - 988.Google Scholar

  • [58] Xu C, Willfor S, Holmlund P, Holmbom B: Rheological properties of water-soluble spruce O-acetyl galactoglucomannans, Carbohyd. Polymers 75 (2009) 498 - 504.Google Scholar

About the article

Received: 2012-05-31

Accepted: 2012-09-25

Published Online: 2019-06-07

Published in Print: 2013-02-01

Citation Information: Applied Rheology, Volume 23, Issue 1, 13435, ISSN (Online) 1617-8106, DOI: https://doi.org/10.3933/applrheol-23-13435.

Export Citation

© 2019 Mohamed Ilies Bahlouli, et al., published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in