Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Applied Rheology

Editor-in-Chief: Fischer, Peter / Kröger, Martin

IMPACT FACTOR 2018: 0.959
5-year IMPACT FACTOR: 1.023

CiteScore 2018: 0.86

SCImago Journal Rank (SJR) 2018: 0.267
Source Normalized Impact per Paper (SNIP) 2018: 0.521

Open Access
See all formats and pricing
More options …
Volume 27, Issue 5


Couette Flow of a Yield-Stress Fluid With Slip As Studied by Rheo-Piv

Esteban F. Medina-Bañuelos
  • Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, U.P. Adolfo López Mateos Edif. 8, Col. Lindavista, C.P. 07738, Ciudad de México, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benjamín M. Marín-Santibáñez
  • Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, U.P. Adolfo López Mateos Edif. 8, Col. Lindavista, C.P. 07738, Ciudad de México, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José Pérez-González
  • Corresponding author
  • Laboratorio de Reología y Física de la Materia Blanda, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U.P. Adolfo López Mateos Edif. 9, Col. Lindavista, C.P. 07738 Ciudad de México, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francisco Rodríguez-González
  • Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, C.P. 62731, Yautepec, Morelos, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-06-07 | DOI: https://doi.org/10.3933/applrheol-27-53893


The Couette flow of a model yield-stress fluid with slip at the walls, a 0.12% Carbopol® 940 microgel, was analyzed in this work by simultaneous rheometrical and particle image velocimetry measurements (Rheo-PIV). The Rheo-PIV technique was first tested in the analysis of the Couette flow of a Newtonian fluid and then used to determine the velocity and shear rate distributions of the microgel across gap. A reliable and full description of the different flow regimes occurring in the steady Couette flow of yield-stress fluids with slip at the rheometer walls was obtained, which includes rigid body-like motion at stresses below the yield one, rigid body-like motion and shear flow at stresses above the yield one, as well as pure shear flow once the shear stress at the outer cylinder overcomes the yield value. Slip occurred at both cylinders, which were made up of hydrophobic (inner) and hydrophilic (outer) materials, respectively. The slip velocity values measured at both walls increased along with the shear stress and the trends of these dependencies deviated from the predictions of the hydrodynamic and elastohydrodynamic lubrication mechanisms of slip in the flow of soft deformable particle dispersions [1]. Besides, the yield stress was determined with good accuracy from the velocity profiles, as well as the location of the yielded and non-yielded regions for each flow condition. Finally, the consistency of the obtained velocity profiles was tested by comparison with a theoretical prediction for the Couette flow problem of a Herschel-Bulkley fluid without slip.

Keywords: Couette flow; yield-stress fluids; microgels; slip; particle image velocimetry; surface effects


  • [1] Seth JR, Cloitre M, Bonnecaze RT: Influence of shortrange forces on wall-slip in microgel pastes, J. Rheol. 52 (2008) 1241 - 1268.Google Scholar

  • [2] Buscall R: Letter to the Editor: Wall slip in dispersion rheometry, J. Rheol. 54 (2010) 1177 - 1183.CrossrefGoogle Scholar

  • [3] Aktas S, Kalyon DM, Marín-Santibáñez BM, Pérez-González J: Shear viscosity and wall slip behavior of a viscoplastic hydrogel, J. Rheol. 58 (2014) 513 - 535.Web of ScienceCrossrefGoogle Scholar

  • [4] Caballero-Hernandez J, Gomez-Ramirez A, Duran JDG, Gonzalez-Caballero F, Zubarev A, Lopez-Lopez MT: On the effect of wall slip on the determination of the yield stress of magnetorheological fluids, Appl. Rheol. 27 (2017) 15001.Web of ScienceGoogle Scholar

  • [5] Coussot P: Yield stress fluid flows: A review of experimental data, J. Non-Newt. Fluid Mech. 211 (2014) 31-49.Google Scholar

  • [6] Magnin A, Piau JM: Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel, J. Non-Newt. Fluid Mech. 36 (1990) 85 - 108.Google Scholar

  • [7] Aral BK, Kalyon DM: Effects of temperature and surface roughness on time‐dependent development of wall slip in steady torsional flow of concentrated suspensions, J. Rheol. 38 (1994) 957 - 972.Google Scholar

  • [8] Kalyon DM: Apparent slip and viscoplasticity of concentrated suspensions, J. Rheol. 49 (2005) 621 - 640.Google Scholar

  • [9] Cloitre M, Bonnecaze RT: A review on wall slip in high solid dispersions, Rheol. Acta 56 (2017) 283 - 305.Google Scholar

  • [10] Fukushima E: Nuclear magnetic resonance as a tool to study flow, Ann. Rev. Fluid Mech. 31 (1999) 95 - 123.Google Scholar

  • [11] Götz J, Kreibich W, Peciar M: Extrusion of pastes with a piston extruder for the determination of the local solid and fluid concentration, the local porosity and saturation and displacement profiles by means of NMR imaging, Rheol. Acta 41 (2002) 134 - 143.Google Scholar

  • [12] Ouriev B, Windhab EJ: Rheological study of concentrated suspensions in pressure- driven shear flow using a novel in-line ultrasound Doppler method, Exp. Fluids 32 (2002) 204 - 211.Google Scholar

  • [13] Raynaud JS, Moucheront P, Baudez JC, Bertrand F, Guilbaud JP, Coussot P: Direct determination by nuclear magnetic resonance of the thixotropic and yielding behavior of suspensions, J. Rheol. 46 (2002) 709 - 732.CrossrefGoogle Scholar

  • [14] Bécu L, Grondin P, Colin A, Manneville S: How does a concentrated emulsion flow? Colloid Surface A 263 (2005) 146 - 152.Google Scholar

  • [15] Bonn D, Rodts S, Groenink M, Rafaï S, Shahidzadeh-Bonn N, Coussot P: Some Applications of Magnetic Resonance Imaging in Fluid Mechanics: Complex Flows and Complex Fluids, Ann. Rev. Fluid Mech. 40 (2008) 209 - 233.Google Scholar

  • [16] Coussot P, Tocquer L, Lanos C, Ovarlez G: Macroscopic versus local rheology of yield stress fluids, J. Non-Newt. Fluid Mech. 158 (2009) 85 - 90.Google Scholar

  • [17] Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ: Rheology of pulp suspensions using ultrasonic Doppler velocimetry, Rheol. Acta 49 (2010) 1127 - 1140.Google Scholar

  • [18] Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ: The apparent yield stress of pulp fiber suspensions, J. Rheol. 54 (2010) 1137 - 1154.Web of ScienceCrossrefGoogle Scholar

  • [19] Rabideau BD, Moucheront P, Bertrand F, Rodts S, Roussel N, Lanos C, Coussot P: The extrusion of a model yield stress fluid imaged by MRI velocimetry, J. Non-Newt. Fluid Mech. 165 (2010) 394 - 408.Google Scholar

  • [20] Derakhshandeh B, Vlassopoulos D, Hatzikiriakos SG: Thixotropy, yielding and ultrasonic Doppler velocimetry in pulp fibre suspensions, Rheol. Acta 51 (2012) 201 - 214.Web of ScienceGoogle Scholar

  • [21] Pérez-González J, López-Durán JJ, Marín-Santibáñez BM, Rodríguez-González F: Rheo-PIV of a yield-stress fluid in a capillary with slip at the wall, Rheol. Acta 51 (2012) 937 - 946.Web of ScienceGoogle Scholar

  • [22] Ortega-Avila JF, Pérez-González J, Marín-Santibáñez BM, Rodríguez-González F, Aktas S, Malik M, Kalyon DM: Axial annular flow of a viscoplastic microgel with wall slip, J. Rheol. 60 (2016) 503 - 515.CrossrefWeb of ScienceGoogle Scholar

  • [23] Chatzimina M, Gerogiou G, Alexandrou A: Wall shear rates in circular Couette flow of a Herschel-Bulkley fluid, Appl. Rheol. 19 (2009) 34288.Google Scholar

  • [24] Krieger IM, Elrod H: Direct determination of the flow curves of Non‐Newtonian fluids. II. Shearing rate in the concentric cylinder viscometer, J. Appl. Phys. 24 (1953) 134 - 136.CrossrefGoogle Scholar

  • [25] Krieger IM: Shear rate in the Couette viscometer, Trans. Soc. Rheol. 12 (1968) 5 - 11.Google Scholar

  • [26] Yang TMT, Krieger IM: Comparison of methods for calculating shear rates in coaxial viscometers, J. Rheol. 22 (1978) 413 - 421.CrossrefGoogle Scholar

  • [27] Darby R: Couette viscometer data reduction for materials with a yield stress, J. Rheol. 29 (1985) 369 - 378.CrossrefGoogle Scholar

  • [28] MacSporran WC: Direct numerical evaluation of shear rates in concentric cylinder viscometry, J. Rheol.30 (1986) 125 - 132.CrossrefGoogle Scholar

  • [29] Nguyen QD, Boger DV: Characterization of yield stress fluids with concentric cylinder viscometers, Rheol. Acta 26 (1987) 508 - 515.Google Scholar

  • [30] Borgia A, Spera FJ: Error analysis for reducing noisy wide‐gap concentric cylinder rheometric data for nonlinear fluids: Theory and applications, J. Rheol. 34 (1990) 117 - 136.CrossrefGoogle Scholar

  • [31] Yeow YL, Ko WC, Tang PPP: Solving the inverse problem of Couette viscometry by Tikhonov regularization, J. Rheol. 44 (2000) 1335 - 1351.CrossrefGoogle Scholar

  • [32] Leong YK, Yeow YL: Obtaining the shear stress shear rate relationship and yield stress of liquid foods from Couette viscometry data, Rheol. Acta 42 (2003) 365 - 371.Google Scholar

  • [33] Ancey C: Solving the Couette inverse problem using a wavelet-vaguelette decomposition, J. Rheol. 49 (2005) 441 - 460.Google Scholar

  • [34] De Hoog FR, Anderssen RS: Regularization of first kind integral equations with application to Couette viscometry, J. Int. Equ. Appl. 18 (2006) 249 - 265.Google Scholar

  • [35] Yeow YL, Choon B, Karniawan L, Santoso L: Obtaining the shear rate function and the slip velocity function from Couette viscometry data, J. Non-Newt. Fluid Mech. 124 (2004) 43 - 49.Google Scholar

  • [36] Marchesini FH, Naccache MF, Abdu A, Alicke AA, de Souza Mendes PR: Rheological characterization of yield-stress materials: Flow pattern and apparent wall slip, Appl. Rheol. 25 (2015) 53883.Web of ScienceGoogle Scholar

  • [37] Bird RB, Armstrong RC, Hassager O, Curtiss CF: Dynamics of polymeric liquids: Fluid mechanics, Vol. 1, Wiley (1977).Google Scholar

  • [38] Macosko CW: Rheology: Principles, measurements, and applications, VCH (1994).Google Scholar

  • [39] Mooney M: Explicit formulas for slip and fluidity, J. Rheol. 2 (1931) 210 - 222.Google Scholar

  • [40] Yoshimura A, Prud'homme RK: Wall slip corrections for Couette and parallel disk viscometers, J. Rheol. 32 (1988) 53 - 67.CrossrefGoogle Scholar

  • [41] Bonn D, Denn MM: Yield stress fluids slowly yield to analysis, Science 324 (2009) 1401 - 1402.Google Scholar

  • [42] Ovarlez G, Cohen-Addad S, Krishan K, Goyon J, Coussot P: On the existence of a simple yield stress fluid behavior, J. Non-Newt. Fluid Mech. 193 (2013) 68 - 79.Google Scholar

  • [43] Blanc F, Peters F, Lemaire E: Local transient rheological behavior of concentrated suspensions, J. Rheol. 55 (2011) 835 - 854.CrossrefWeb of ScienceGoogle Scholar

  • [44] Serrano-Aguilera JJ, Parras L, del Pino C, Rubio-Hernandez FJ: Rheo-PIV of Aerosil® R816/polypropylene glycol suspensions, J. Non-Newt. Fluid Mech. 232 (2016) 22 - 32.Google Scholar

  • [45] Vand V: Viscosity of solutions and suspensions. I. Theory, J. Phys. Colloid Chem. 52 (1948) 277 - 299.CrossrefGoogle Scholar

  • [46] Seth JR, Locatelli-Champagne C, Monti F, Bonnecaze RT, Cloitre M: How do soft particle glasses yield and flow near solid surfaces?, Soft Matter 8 (2012) 140- 148.Google Scholar

  • [47] López-Durán JJ, Pérez-González J, Marín-Santibáñez BM, Rodríguez-González F: A new method to determine the yield stress of a fluid from velocity profiles in a capillary, Rev. Mex. Ing. Quim. 12 (2013) 121 - 128.Google Scholar

About the article

Received: 2017-05-18

Accepted: 2017-07-19

Published Online: 2019-06-07

Published in Print: 2017-10-26

Citation Information: Applied Rheology, Volume 27, Issue 5, Pages 18–28, ISSN (Online) 1617-8106, DOI: https://doi.org/10.3933/applrheol-27-53893.

Export Citation

© 2019 Esteban F. Medina-Bañuelos, et al., published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in