Ditmar P., Klees R. (2002) A method to compute the Earth's gravity field from SGG/SST data to be acquired by the GOCE satellite. Delft University Press, Delft, Netherlands.Google Scholar

Ditmar P., Klees R., Kostenko F. (2003) Fast and accurate computation of spherical harmonic coefficients from satellite gradiometry data. *Journal of Geodesy*, Vol. 76, No. 11-12, pp. 690-705.Google Scholar

ESA (2003) ESA's gravity mission GOCE. BR-209, ESA Publication Division, Netherlands.Google Scholar

Holmes S. A., Featherstone W. E. (2002) A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalized associated Legendre functions. *Journal of Geodesy*, Vol. 76, No. 8, pp. 279-299.Google Scholar

Heiskanen W. A., Moritz H. (1967) Physical Geodesy. Freeman and Company, San Francisco.Google Scholar

Ilk K. H. (1983) Ein Beitrag zur Dynamik ausgedehnter Körper - Gravitationswechselwirkung. Deutsche Geodätische Kommission, Reihe C, Heft No. 288, München.Google Scholar

Kaula W. M. (1966) Theory of Satellite Geodesy. Blaisdell Publishing Company, Waltham, Massachusetts.Google Scholar

Klees R., Koop R., Visser P., van den IJssel J. (2000a) Efficient gravity field recovery from GOCE gravity gradient observations. *Journal of Geodesy*, Vol. 74, pp. 561-571.Google Scholar

Klees R., Koop R., Visser P., van den IJssel J. (2000b) Data analysis for the GOCE mission. *International Association of Geodesy Symposia*, Vol. 121, (Ed. Schwarz) Geodesy Beyond 2000 - The Challenges of the First Decade, pp. 69-74.Google Scholar

Koop R. (1993) Global gravity field modelling using satellite gravity gradiometry. *Publ. Geodesy, New series*, No. 38, Netherlands Geodetic Commission, Delft.Google Scholar

Pail R., Plank G. (2002) Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. *Journal of Geodesy*, Vol. 76, No. 8, pp. 462-474.Google Scholar

Petrovskaya M. S., Vershkov A. N. (2006) Non-singular expressions of the gravity gradients in the local north-oriented and orbital reference frames. *Journal of Geodesy*, Vol. 80, No. 3, pp. 117-127.Web of ScienceGoogle Scholar

Reed G. B. (1973) Application of kinematical geodesy for determining the short wave length components of the gravity field by satellite gradiometry. Ohio State University, Dept. of Geod. Sciences, Rep. No. 201, Columbus, Ohio.Google Scholar

Rummel R., Sansò F., van Gelderen M., Koop R., Schrama E., Brovelli M., Migliaccio F., Sacerdote F. (1993) Spherical harmonic analysis of satellite gradiometry. *Publ. Geodesy, New Series*, No. 39, Netherlands Geodetic Commission, Delft.Google Scholar

Smart W. M. (1953) Celestial Mechanics. Longmans, Green and Co, London - New York - Toronto.Google Scholar

Sneeuw N. (1991) Inclination functions. Group Theoretical Background and a Recursive Algorithm, Department of Mathematical and Physical Geodesy, Rep. 91.2, Delft University of Technology.Google Scholar

Sneeuw N. (1992) Representation coefficients and their use in satellite geodesy. *Manuscripta Geodaetica*, Vol.17, pp. 117-123.Google Scholar

Sneeuw N. (2000) A semi-analytical approach to gravity field analysis from satellite observations. Reihe C, Heft Nr. 527, Deutsche Geodätische Kommission, München.Google Scholar

Sneeuw N., Dorobantu R., Gerlach C., Müller J., Oberndorfer H., Rummel R., Koop R., Visser P., Hoyng P., Selig A., Smit M. (2001) Simulation of the GOCE gravity field mission. In: Benciolini B. (ed.) IV Hotine-Marussi Symposium on Mathematical Geodesy. IAG Symposia Vol. 122, Springer, Berlin - Heidelberg - New York, pp. 14-20.Google Scholar

Vermeer M. (1990) Observable quantities in satellite gradiometry. *Bull. Gód.*, Vol. 64, pp. 347-361.Google Scholar

## Comments (0)