Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Artificial Satellites

The Journal of Space Research Centre of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.33

SCImago Journal Rank (SJR) 2016: 0.179
Source Normalized Impact per Paper (SNIP) 2016: 0.560

Open Access
Online
ISSN
2083-6104
See all formats and pricing
More options …
Volume 47, Issue 2 (Jan 2012)

Issues

Unmodelled Effects in the Horizontal Velocity Field Determination: ASG-EUPOS Case Study

Janusz Bogusz / Mariusz Figurski / Bernard Kontny
  • Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Grzempowski
  • Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-06-14 | DOI: https://doi.org/10.2478/v10018-012-0014-x

Unmodelled Effects in the Horizontal Velocity Field Determination: ASG-EUPOS Case Study

Recent space and satellite technologies offer great opportunities to determine crustal movements in the single, global reference frame. The densification of the global network through local area networks leads to increase the resolution of modelled deformations both horizontal and vertical. However, the credibility of the obtained velocity field is limited by several factors associated with unmodelled (or mismodelled) effects at the stage of GNSS data adjustment. Some of them are periodic (the influence of local atmospheric or hydrological impacts), some temporary (natural or anthropogenic seismicity) or related to local influences (snow load or effects associated with the freezing of the ground). This paper presents the usefulness of ASG-EUPOS time series for determination of the regional velocity field. The system has been operating since mid-2008, so the velocities obtained through the processing of 3-year time series are supposed to be reliable. The paper also presents comparison of the velocity determinations to the geological NNR-NUVEL-1A and geodetic APKIM2005 models.

Keywords: GPS; local velocity field; ASG-EUPOS

  • Altamimi, Z., Collilieux X., Legrand J., Garayt B., Boucher C. (2007): "ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters". J. Geophys. Res., 2007, nr 112.Web of ScienceGoogle Scholar

  • Becker M., Cristea E., Figurski M., Gerhatova L., Grenerczy G., Hefty J., Kenyeres A., Liwosz T., Stangl G. (2002): "Central European intraplate velocities from CEGRN campaigns". Reports on Geodesy No 1 (61), pp. 83-89, 2002.Google Scholar

  • Bogusz J., Figurski M., Kroszczyński K., Szafranek K. (2011a): "Investigation of environmental influences to the precise GNNS solutions". Acta Geodynamica et Geomaterialia, v. 8, No. 1, 2011, pp. 5-15.Google Scholar

  • Bogusz J., Hefty J. (2011): "Determination of the not-modelled short periodic variations in the GPS permanent sites' positions". Acta Geodynamica et Geomaterialia, vol. 8, No. 3 (163), 2011, pp. 283-290.Google Scholar

  • Bogusz J., Jarosiński M., Wnuk K. (2011b): "Regional 2.5D model of deformations in Central Europe from GNSS observations: general assumptions of project". Reports on Geodesy No 2 (91), pp. 59-66.Google Scholar

  • Bosy J., Graszka W., Leończyk M. (2007): "ASG-EUPOS - a multifunctional precise satellite positioning system in Poland". European Journal of Navigation, Vol. 5 No. 4, pp. 30-34.Google Scholar

  • Brockmann, E. (1997): "Combination of solutions for geodetic and geodynamic applications of the Global Positioning System". Geodätisch-geophysikalische Arbeiten in der Schweiz 55, Schweizerischen Geodätischen Kommission.Google Scholar

  • De Mets C., Gordon R. G., Argus D. F., Stein S. (1990): "Current plate motion". Geophysical Journal International, 1990, no 101, pp. 425-478.Google Scholar

  • Dong D., Fang P., Bock Y., Cheng M. K., Miyazaki S. (2002): "Anatomy of apparent seasonal variations from GPS-derived site position time series". J. Geophys. Res. 107(B4):2075. DOI: 10.1029/2001JB000573.CrossrefGoogle Scholar

  • Drewes H. (2009): "The Actual Plate Kinematic and Crustal Deformation Model APKIM2005 as basis for a non-rotation ITRF". Geodetic Reference Frames, IAG Symposia, 2009, no 134, pp. 95-99.Google Scholar

  • Figurski M., Bogusz J., Bosy J., Kontny B., Krankowski A., Wielgosz P. (2011): ""ASG+": project for improving Polish multifunctional precise satellite positioning system". Reports on Geodesy No 2 (91) 2011, pp. 51-58.Google Scholar

  • Figurski M., Szafranek K., Bogusz J., Kamiński P. (2010): "Investigation on stability of mountainous EUPOS sites' coordinates". Acta Geodynamica et Geomaterialia, Vol. 7, No. 3 (159), 2010, pp. 263-274.Google Scholar

  • Grenerczy G., Kenyeres A., Fejes I. (2000): "Present crustal movements and strain distribution in Central Europe inferred from GPS measurements". J. Geophys. Res., 105(B9), pp. 21 835-21 847, 2000.Google Scholar

  • Hefty J. (2005): "Kinematics of Central European GPS geodynamic reference network as the result of epoch campaigns during nine years". Reports on Geodesy No. 2 (73), pp. 23-32, 2005.Google Scholar

  • Hefty J. (2007): "Geo-kinematics of central and south-east Europe resulting from combination of various regional GPS velocity fields". Acta Geodyn. Geomater., Vol. 4, No. 4 (148), pp. 173-189, 2007.Google Scholar

  • Hefty J., Igondová M., Hrčka M. (2005): "Contribution of GPS permanent stations in central Europe to regional geo-kinematical investigations". Acta Geodynamica et Geomaterialia, Vol.2, No.3 (139), pp. 75-86,2005.Google Scholar

  • Huber P. J. (1964): "Robust estimation of a location parameter". Ann. Math. Stat., 35, pp. 73-101.Google Scholar

  • Hubert M., and Rousseeuw P. J. (1997), Robust regression with both continuous and binary regressors, Journal of Statistical Planning and Inference, 57, 153-163.Google Scholar

  • Kenyeres A., Bruyninx C. (2009): "Noise and periodic terms in the EPN time series". IAG Symposia Series "Geodetic Reference Frames", Vol. 134, pp. 143-149, doi:10.1007/978-3-642-00860-3_22.CrossrefGoogle Scholar

  • Kontny B. (2003), Geodezyjne badania wspólczesnej kinematyki glównych struktur tektonicznych polskich Sudetów i bloku przedsudeckiego na podstawie pomiarów GPS, Zeszyty naukowe Akademii Rolniczej we Wroclawiu, Rozprawy CCII, 83-90 (in Polish).Google Scholar

  • Penna N. T., Stewart M. P. (2003): "Aliased tidal signatures in continuous GPS height time series". Geophys. Res. Lett. 30(23):2184. DOI: 10.1029/2003GL018828.CrossrefGoogle Scholar

  • Press et al. (1993), Numerical recipes in C: the art of scientific computing 1988-1992, Cambridge University Press.Google Scholar

  • Wessel P., Smith W. H. F. (1998): "New, improved version of the Generic Mapping Tools". Released, EOS Trans. AGU, 79, 579.Google Scholar

About the article


Published Online: 2012-06-14

Published in Print: 2012-01-01


Citation Information: Artificial Satellites, ISSN (Online) 2083-6104, ISSN (Print) 0208-841X, DOI: https://doi.org/10.2478/v10018-012-0014-x.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[3]
Jaroslaw Bosy
Pure and Applied Geophysics, 2014, Volume 171, Number 6, Page 783
[4]
Janusz Bogusz, Anna Kłos, Piotr Grzempowski, and Bernard Kontny
Pure and Applied Geophysics, 2014, Volume 171, Number 6, Page 809

Comments (0)

Please log in or register to comment.
Log in