Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Artificial Satellites

The Journal of Space Research Centre of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.33

SCImago Journal Rank (SJR) 2016: 0.179
Source Normalized Impact per Paper (SNIP) 2016: 0.560

Open Access
Online
ISSN
2083-6104
See all formats and pricing
More options …
Volume 48, Issue 3 (Sep 2013)

Issues

A Comparison Between Numerical Differentiation and Kalman Filtering for a Leo Satellite Velocity Determination

M.A. Sharifi
  • Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, Enghelab Ave., P.O. Box 11365-4563, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M.R. Seif
  • Corresponding author
  • Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, Enghelab Ave., P.O. Box 11365-4563, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M.A. Hadi
  • Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, Enghelab Ave., P.O. Box 11365-4563, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-13 | DOI: https://doi.org/10.2478/arsa-2013-0009

Abstract

The kinematic orbit is a time series of position vectors generally obtained from GPS observations. Velocity vector is required for satellite gravimetry application. It cannot directly be observed and should be numerically determined from position vectors. Numerical differentiation is usually employed for a satellite’s velocity, and acceleration determination. However, noise amplification is the single obstacle to the numerical differentiation. As an alternative, velocity vector is considered as a part of the state vector and is determined using the Kalman filter method. In this study, velocity vector is computed using the numerical differentiation (e.g., 9-point Newton interpolation scheme) and Kalman filtering for the GRACE twin satellites. The numerical results show that Kalman filtering yields more accurate results than numerical differentiation when they are compared with the intersatellite range-rate measurements.

Keywords : Kalman Filtering; Numerical Differentiation; Satellite Velocity; KBR system

  • [1] L. Richard, J. Burden, F. Douglas, Numerical Analysis (7th Ed), Brooks, Cole, 2000.Google Scholar

  • [2] T. Reubelt, G. Asusten, E.W. Grafarend, Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite. Case study: CHAMP. J Geod 77 (2003) (5-6):257-278. DOI : 10.1007/s00190-003-0322-9CrossrefGoogle Scholar

  • [3] L. Foldvary, D. Svehla, Ch. Gerlach, M. Wermuth, Th Gruber, R. Rummel, M. Rothacher, B. Frommknecht, Th. Peters, P. Steigenberger, Gravity model TUM-2sp based on the energy balance approach and kinematic CHAMP orbits, Earth Observation with CHAMP - Results from Three Years in Orbit (Ed. Reigber Ch, Lühr H, Schwintzer P et al.), Springer, Berlin, 13-18, 2004.Google Scholar

  • [5] P.S. Maybeck, Stochastic Models, Estimation, and Control. Volume 1, Academic Press, Inc, 1979.Google Scholar

  • [4] M. Hanke, O. Scherzer, Inverse problems light: numerical differentiation. Amer. Math. Monthly, 108 (2001) 512-5211.Google Scholar

  • [6] A. Gelb, Applied Optimal Estimation. MIT Press, Cambridge, MA, 1974.Google Scholar

  • [7] R.G. Brown, P.Y.C Hwang, Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercises and Solutions, 3rd ed., Wiley, New York, 1997.Google Scholar

  • [8] L. Foldavary, Analysis of Numerical Differentiation methods Applied for Determination of Kinematic Velocities for LEOs, Per. Pol. Civil Eng., 51/1 17-24, 2007.Web of ScienceGoogle Scholar

  • [9] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in FORTRAN. The Art of Scientific Computing, 2nd ed, Cambridge University Press, Cambridge, 1992.Google Scholar

  • [10] R.E. Kalman, A new approach to linear filtering and prediction problems. Transactions of the ASME, Ser. D, Journal of Basic Engineering, 82 (1960) 34-45.Google Scholar

  • [11] D.A. Vallado, Fundamentals of Astrodynamics and Applications. Third Edition. Published Jointly By Microcosm and Springer, New York, 2007.Google Scholar

  • [12] B.D. Tapley, B.E. Schutz, G.H. Born, Statistical Orbit Determination. Elsevier Academic Press, New York, 2004Google Scholar

  • [13] F.G. Lemoine, et al., The development of the joint NASA GSFC and the National Imagery Mapping Agency (NIMA) geopotential model EGM96. NASA Technical Report NASA/TP-1998-206861, Goddard Space Flight Center, Greenbelt, Maryland, 1998.Google Scholar

  • [14] M. Chapront-Touze, J. Chapront, The lunar ephemeris ELP 2000, Astronomy and Astrophysics, 190 (1988) 342-352.Google Scholar

  • [15] O. Montenbruck, Practical Ephemeris Calculations, Springer Verlag, Heidelberg, 1989.Google Scholar

  • [16] J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res., 107 (2002). doi:10.1029/2002JA009430, 2002.CrossrefGoogle Scholar

  • [17] O. Montenbruck, E. Gill, Satellite orbits-models, methods, and applications. Springer, Berlin, 2000.Google Scholar

  • [18] D.D. McCarthy, G. Petit, IERS Conventions, IERS Tech. Note, vol. 32. Verlag des Bundesamts fur Kartogr. und Geod., Frankfurt am Main, Germany, 2004. Available at: http://www.iers.org/iers/publications/tn/tn32Google Scholar

  • [19] Z. Kang, B. Tapley, S. Bettadpur, J. Ries, P. Nagel, R. Pastor, Precise orbit determination for the GRACE mission using only GPS data, J. Geod 80 (2006)322-331.Google Scholar

  • [20] K. Case, G. Kruizinga, S. Wu, GRACE level 1B Data Product User Handbook Version 1.2, 2004. Google Scholar

About the article

Published Online: 2013-08-13

Published in Print: 2013-09-01


Citation Information: Artificial Satellites, ISSN (Online) 2083-6104, ISSN (Print) 0208-841X, DOI: https://doi.org/10.2478/arsa-2013-0009.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
J.M. Gambi and M.L. García del Pino
Acta Astronautica, 2017, Volume 131, Page 83

Comments (0)

Please log in or register to comment.
Log in