Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Artificial Satellites

The Journal of Space Research Centre of Polish Academy of Sciences

4 Issues per year

CiteScore 2016: 0.33

SCImago Journal Rank (SJR) 2016: 0.179
Source Normalized Impact per Paper (SNIP) 2016: 0.560

Open Access
See all formats and pricing
More options …
Volume 48, Issue 4


Evaluation of Symmetric Neutral-Atmosphere Mapping Functions Using Ray-Tracing Through Radiosonde Observations

A.H. Souri
  • Corresponding author
  • Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, North Kargar Ave., P.O. Box 11365-4563, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M.A. Sharifi
  • Corresponding author
  • Department of Surveying and Geomatics Engineering, University College of Engineering, University of Tehran, North Kargar Ave., P.O. Box 11365-4563, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-04 | DOI: https://doi.org/10.2478/arsa-2013-0015


The aim of this paper is to compare the validity of six recent symmetric mapping functions. The mapping function models the elevation angle dependence of the tropospheric delay. Niell Mapping Function (NMF), Vienna Mapping Function (VMF1), University of New Brunswick- VMF1 (UNB-VMF1) mapping functions, Global Mapping Function (GMF) and Global Pressure and Temperature (GPT2)/GMF are evaluated by using ray tracing through 25 radiosonde stations covering different climatic regions in one year. The ray-traced measurements are regarded as “ground truth”. The ray-tracing approach is performed for diverse elevation angle starting at 5° to 15°. The results for both hydrostatic and non-hydrostatic components of mapping functions support the efficiency of online-mapping functions. The latitudinal dependence of standard deviation for 5° is also demonstrated. Although all the tested mapping functions can provide satisfactory results when used for elevation angles above 15°, for high precision geodetic measurements, it is highly recommended that the online-mapping functions (UNBs and VMF1) be used.The results suggest that UNB models, like VMF have strengths and weaknesses and do not stand out as being consistently better or worse than the VMF1. The GPT2/GMF provided better accuracy than GMF and NMF. Since all of them do not require site specific data; therefore GPT2/GMF can be useful as regards its ease of use.

Keywords : Mapping functions; Ray-tracing; Geodetic measurements; Neutral atmosphere

  • AGU, December 1995: Water vapor in the climate system special report: <http://www.eso.org/gen-fac/pubs/astclim/espas/pwv/mockler.html>Google Scholar

  • AMS, 2007: Glossary of Meteorology. American Meteorological Society. On-line at <http://amsglossary.allenpress.com/glossary>Google Scholar

  • Baby, H. B., P. Gole, and J. Lavergnat, 1988: A model for the tropospheric excess path length of radio waves from surface meteorological measurements. Radio Science, Vol.23, No.6, pp. 1023-1038.CrossrefGoogle Scholar

  • Bean, B.R. and E.J.Dutton, 1996: Radio Meteorology. National Burea of Standards Monograph 92, U.S Goverment Printing Office: Washington, D.C.Google Scholar

  • Berman, A.L., 1976: The prediction of zenith range refraction from surface measurements of meteorological parameters. JPL Technical Report 32-1602, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif.Google Scholar

  • Boehm Johannes, 2004: Troposphärische Laufzeitverzogerungen in der VLBI, Ph.D dissertation, The Institutes of the Course on ‘Geodesy and Geoinformation’ of the Vienna University of Technology.Google Scholar

  • Boehm, J., A. E. Niell, P. Tregoning, and H. Schuh, 2006a: Global Mapping Function(GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, Vol. 33, No. L07304, doi:10.1029/2005GL025546.CrossrefGoogle Scholar

  • Boehm, J., B. Werl, and H. Schuh, 2006b: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research, Vol. 111, No.B02406Google Scholar

  • Boehm, J., P.J. Mendes Cerveira, H. Schuh, P. Tregoning, 2007: The impact of mapping functions for the neutral atmosphere based on numerical weather models in GPS data analysis, IAG Symopsium Series, P. Tregoning and C. Rizos (Eds), pp. 837-843.Google Scholar

  • Buck, Al.L, (1981): New equations for computing vapor pressure and enhancement factor. Journal of applied meteorology, Vol.20, pp. 1527-1532.CrossrefGoogle Scholar

  • Callahan, P.S., 1973: Prediction of tropospheric wet-component range error from surface measurements. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif., JPL Technical Report 32-1526, Vol. XVIII, pp. 41-46.Google Scholar

  • Chao, C.C., 1971: New tropospheric range corrections with seasonal adjustment. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif., JPL Technical Report 32­1526, Vol. VI, pp. 67-82.Google Scholar

  • Davis, J.L., T.A.Herring, I.I.Shapiro, A.E.E. Rogers and G.Elgered, (1985): Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimated of baseline length. Radio science, Vol.20, No. 6,pp. 1593-1607.CrossrefGoogle Scholar

  • Emardson, T. R., G. Elgered, and J. M. Johansson, 1998: Three months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receivers. J. Geophys. Res., Vol.103, pp. 1807- 1820Google Scholar

  • FMH, 1997: Federal Meteorological Handbook, No.3. Office of the Federal Coordinator for Meteorological Services and Supporting Research. Washington DC.Google Scholar

  • Hobiger, T., R. Ichikawa, Y. Koyama, and T. Kondo, 2008: Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models. J. Geophys. Res., 113, D20302, doi:10.1029/2008JD010503.Web of ScienceCrossrefGoogle Scholar

  • K. Lagler, M. Schindelegger,J. Bohm, H. Krásná,and T.Nilsson, 2013: GPT2: Empirical slant delay model for radio space geodetic techniques, Geophysical Research Letters, Vol. 40, pp. 1069-1073, doi:10.1002/grl.50288, 2013Web of ScienceCrossrefGoogle Scholar

  • Marcelo C. Santos, Matthew McAdam, and Johannes Boehm, 2012: Implementation Status of the UNB-VMF1, EGU General Assembly 2012 Vienna, Austria, pp. 22- 27.Google Scholar

  • Marini, J. W. 1972: Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Science, Vol. 7, No. 2, pp. 223-231, doi:10.1029/RS007i002p00223.CrossrefGoogle Scholar

  • Mendes, V.B. 1999: Modeling The Neutral-Atmosphere Propagation Delay in Radiometric Space Techniques. Ph.D. dissertation, Department of Geodesy and Geomatics Engineering Technical Report No. 199, University of New Brunswick, Canada.Google Scholar

  • Michael Bevis, Steven Businger, Thomas A. Herring, Christain Rocken, Richard A. Anthens, and Randolph H. Ware, 1992: GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System, Journal of Geophysical Research, Volume 97, pp. 15,787-15,801.Google Scholar

  • NASA WATER VAPOR PROJECT - MEaSUREs (NVAP-M), Algorithm Theoretical Basis Document, available on: <http://eosweb.larc.nasa.gov/sites/default/files/project/nvap/NVAP> M ATBD Feb2013.pdfGoogle Scholar

  • Niell, A. E., 1996: Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research, Vol. 101, No. B2, pp. 3227-3246, Google Scholar

  • Niell, A. E., A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and C. A. Upham, 2001: Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J. Atmos. Oceanic Technol., Vol.18, 830- 850Google Scholar

  • Owens, J.C., 1967: Optical refractive index of air: Dependence on pressure, temperature and composition. Applied Optics, Vol.6, No.1,pp. 51-59Google Scholar

  • Paris, D. T., and F. K. Hurd, 1969: Basic Electromagnetic Theory. McGraw-Hill, New York.Google Scholar

  • Ruger,J.M, 2002: Refractive index formula for radio waves. FiG XXII International Congres, International Federation of Surveyors(FIG), Washington,D.C, April 19-26.Google Scholar

  • Saastamoinen, J., 1973: Contributions to the theory of atmospheric refraction. In three parts. Bulletin Geodesique, No.105, pp. 279-298; No.106, pp. 383-397; No.107, pp. 13-34.Google Scholar

  • Thayer, G. D. 1967: A rapid and accurate ray tracing algorithm for a horizontally stratified atmosphere. Radio Sci., Vol.2, No.1, pp. 249- 252.Google Scholar

  • Website1: <http://eosweb.larc.nasa.gov/HORDERBIN/HTML> Start.cgiGoogle Scholar

About the article

Published Online: 2013-12-04

Published in Print: 2013-12-01

Citation Information: Artificial Satellites, Volume 48, Issue 4, Pages 171–189, ISSN (Online) 2083-6104, ISSN (Print) 0208-841X, DOI: https://doi.org/10.2478/arsa-2013-0015.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in