Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Artificial Satellites

The Journal of Space Research Centre of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.33

SCImago Journal Rank (SJR) 2016: 0.179
Source Normalized Impact per Paper (SNIP) 2016: 0.560

Open Access
Online
ISSN
2083-6104
See all formats and pricing
More options …
Volume 49, Issue 1 (Mar 2014)

Issues

GNSS positioning algorithms using methods of reference point indicators

Bartlomiej Oszczak
  • Corresponding author
  • Department of Satellite Geodesy and Navigation Faculty of Geodesy and Land Management University of Warmia and Mazury in Olsztyn, Poland Department of Aircraft Navigation Polish Air Force Academy in Deblin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-25 | DOI: https://doi.org/10.2478/arsa-2014-0002

ABSTRACT

The GNSS standard positioning solution determines the coordinates of the GNSS receiver and the receiver clock offset from measurements of at least four pseudoranges. For GNSS positioning, a direct solution was derived for five and ten observed satellites without linearisation of the observation equations and application of the least squares method. The article presents the basic principles of methods for solving the positioning problem, the formulas and their derivation. The numerical examples with simulated pseudorange data confirm the correct performance of the proposed algorithm. The presented algorithms should be further tested with real measurements in other domains of positioning and navigation as well.

Keywords: Global Positioning System; Satellite Navigation Systems; Radio Navigation; Navigation; Aircraft Navigation; Marine Navigation; Least Squares Approximation; Linear Approximation; Reference Point Indicator

References

  • B. Hofmann-Wellenhof, H. Lichtenegger, E. Wasle, “Point positioning with code ranges” in GNSS Global Navigation Satellite Systems, Ed. SpringerWienNewYork, 2008, Austria, pp. 161-163.Google Scholar

  • J. Klobuchar, “Design and characteristics of the GPS ionospheric time - delay algorithm for single frequency” in Position Location and Navigation Symposium., Las Vegas, Nevada, 1986, November 4-7, pp. 280-286.Google Scholar

  • H.S. Hopfield, "Two-quartic tropospheric refractivity profile for correcting satellite data" in Journal of Geophysical Research, 1969, Vol. 74, No. 18, pp. 4487-4499.Google Scholar

  • G. Strang, K. Borre, "Receiver position from code observations" in Linear Algebra, Geodesy and GPS,1997, Ed. Wellesley-Cambridge, MA, pp. 460-472.Google Scholar

  • J.B. Tsui, "Basic equations for finding user position" in Fundamentals of Global positioning system receivers. A software approach. Ed. John Wiley & Sons, 2000, pp. 10-11Google Scholar

  • M. Paonni, M. Anghileri, J.A. Avila-Rodriguez S. Wallner, B. Eissfeller “Performance assesment of GNSS signals in terms of time to first fix for cold, warm and hot start” in Proc. of the ION ITM 2010, San Diego, CA, January 25-27. Google Scholar

  • S. Bancroft, "An algebraic solution of the GPS equations" in IEEE Transactions on Aerospace and Electronic Systems, 1991, Vol. 30, No. 4, pp. 1021-1030.Google Scholar

  • J.S. Abel, J.W. Chaffee "Existence and uniqueness of GPS solutions" in IEEE Transactions on Aerospace and Electronic Systems, 1991, Vol. 27, No. 6, pp. 952-956.Google Scholar

  • J.W. Chaffee, J.S. Abel "On the exact solutions of pseudorange equations" in IEEE Transactions on Aerospace and Electronic Systems, 1991, Vol. 30, No. 4, pp. 1021-1030.Google Scholar

  • E.W. Grafarend, J.A. Chan "A closed-form solution of the nonlinear pseudo-ranging equations" in Artificial Satellites Planetary Geodesy, 1996, No. 28, pp. 133-147.Google Scholar

  • A. Kleusberg, "Die direkte Losung des raumlichen hyperbelschnitts" in Zeitschrift fur vermessungswesen, 1994, Vol. 119, No. 4, pp. 188-192.Google Scholar

  • S. Hausbrandt "Auxiliary algorithm" in "Rachunek wyrownawczy i obliczenia geodezyjne", Ed. PWN, 1970, Warsaw, Poland, pp. 530-540.Google Scholar

  • P. Misra, P. Enge, "Code phase measurements" in Global Positioning System. Signals, measurements, and performance", Ed. Ganga-Jamuna Press, 2006, Massachusetts, pp. 148-155.Google Scholar

  • B. Oszczak "New algorithm for GNSS positioning using system of linear equations", in Proc. of the ION GNSS+ 2013, Nashville, Tennessee, September 17-20.Google Scholar

  • B. Oszczak "Algorytm wyznaczania wspolrzednych punktu i dodatkowej niewiadomej z zastosowaniem ukladow rownan liniowych (Algorithm for determination of the coordinates and additional unknown using linear equations)", Scientific Bulletin, Ed. Air Force Academy, 2012, No. 2, Deblin, pp. 163-167.Google Scholar

  • B.W.Parkinson, J.J. Spilker Jr., "GPS error analysis" in Global Positioning System. Theory and Applications. 1996, Ed. American Institute of Navigation and Astronautics, Washington, Vol 1, pp. 469-483.Google Scholar

  • B. Oszczak, E. Sitnik “The Algorithm for Determining the Coordinates of a Point in Three- Dimensional Space by Using the Auxiliary Point". Artificial Satellites. Volume 48, Issue 4, Pages 141-145, ISSN (Online) 2083-6104, ISSN (Print) Google Scholar

About the article

Published Online: 2014-03-25

Published in Print: 2014-03-01


Citation Information: Artificial Satellites, ISSN (Online) 2083-6104, ISSN (Print) 0208-841X, DOI: https://doi.org/10.2478/arsa-2014-0002.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jorge Caravantes, Laureano Gonzalez-Vega, and Alejandro Piñera
GPS Solutions, 2017, Volume 21, Number 1, Page 149

Comments (0)

Please log in or register to comment.
Log in