Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Artificial Satellites

The Journal of Space Research Centre of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.33

SCImago Journal Rank (SJR) 2016: 0.179
Source Normalized Impact per Paper (SNIP) 2016: 0.560

Open Access
Online
ISSN
2083-6104
See all formats and pricing
More options …
Volume 50, Issue 2 (Jun 2015)

Issues

GNSS-Warp Software for Real-Time Precise Point Positioning

Hadaś Tomasz
  • Corresponding author
  • Wroclaw University of Environmental and Life Sciences, Institute of Geodesy and Geoinformatics ul. Grunwaldzka 53, 50-357 Wrocław
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-23 | DOI: https://doi.org/10.1515/arsa-2015-0005

Abstract

On April 1, 2013 IGS launched the real-time service providing products for Precise Point Positioning (PPP). The availability of real-time makes PPP a very powerful technique to process GNSS signals in real-time and opens a new PPP applications opportunities. There are still, however, some limitations of PPP, especially in the kinematic mode. A significant change in satellite geometry is required to efficiently de-correlate troposphere delay, receiver clock offset, and receiver height. In order to challenge PPP limitations, the GNSS-WARP (Wroclaw Algorithms for Real-time Positioning) software has been developed from scratch at Wroclaw University of Environmental and Life Science in Poland. This paper presents the GNSS-WARP software itself and some results of GNSS data analysis using PPP and PPP-RTK (Real-Time Kinematic) technique. The results of static and kinematic processing in GPS only and GPS + GLONASS mode with final and real-time products are presented. Software performance validation in postprocessing mode confirmed that the software can be considered as a state-ofthe- art software and used for further studies on PPP algorithm development. The real-time positioning test made it possible to assess the quality of real-time coordinates, which is a few millimeters for North, East, Up in static mode, a below decimeter in kinematic mode. The accuracy and precision of height estimates in kinematic mode were improved by constraining the solution with an external, near real-time troposphere model. The software also allows estimation of real-time ZTD, however, the obtained precision of 11.2 mm means that further improvements in the software, real-time products or processing strategy are required.

Keywords: PPP; real-time positioning; IGS RTS; GNSS software; troposphere

References

  • BKG (2013). BKG Ntrip Client (BNC) Version 2.8 manual, Federal Agency for Cartography and Geodesy, Frankfurt, GermanyGoogle Scholar

  • Böhm, J., Kouba, J., and Schuh, H. (2009). Forecast Vienna Mapping Functions 1 for real-time analysis of space geodetic observations, Journal of Geodesy, 86(5), 397-401.Web of ScienceGoogle Scholar

  • Bosy, J., Kaplon, J., Rohm, W., Sierny, J., and Hadas T. (2012). Near real-time estimation of water vapour in the troposphere using ground GNSS and the meteorological data, Annales Geophysicae, 30, 1379-1391.Web of ScienceGoogle Scholar

  • Bosy, J., Rohm, W., and Sierny, J. (2010). The concept of Near Real Time atmosphere model based of GNSS and meteorological data from ASG-EUPOS reference stations, Acta Geodynamica et Geomaterialia, 7(3), 253-261.Google Scholar

  • Chen J., Ge M., Dousa J., and Gendt G. (2009). Evaluation of EPOS-RT for Real-time Deformation Monitoring, Journal of Global Positioning Systems, 8(1), 1-5.Google Scholar

  • Dousa, J., and Vaclavovic, P. (2014). Real-time zenith tropospheric delays in support of numerical weather prediction applications, Advances in Space Research, 53, 1347-1358.Google Scholar

  • Dow, J. M., Neilan, R. E., and Rizos, C. (2009). The international GNSS Service in a changing landscape of global navigation satellite systems, Journal of Geodesy, 83, 191-198.Web of ScienceGoogle Scholar

  • Geng, J., Teferle, F. N., Meng, X., and Dodson, A. H. (2010). Towards PPP-RTK: ambiguity resolution in real-time precise point positioning, Advances in Space Research, 47, 1664-1673.Google Scholar

  • Hadas T., and Bosy J. (2014). IGS RTS precise orbits and clocks verification and quality degradation over time, GPS Solutions, 19(1), 93-105Web of ScienceGoogle Scholar

  • Hadas, T., Kaplon, J., Bosy, J., Sierny, J., and Wilgan, K. (2013). Near-real-time regional troposphere models for the GNSS precise point positioning technique, Measurement Science and Technology, 24(2013), 055003 (12pp).Google Scholar

  • Hefty J., and Gerhatova L. (2012). Potential of Precise Point Positioning using 1 Hz GPS data for detection of seismic-related displacements. Acta Geodynamica et Geomaterialia, 9(3), 303-313.Google Scholar

  • Héroux, P., Kouba, J., Collins, P., and Lahaye, F. (2000). GPS carrier-phase point positioning with precise orbit products, Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation 2001, Banff, Alberta, Canada.Google Scholar

  • Jensen, A. B. O., and Ovstedal, O. (2008). The effect of different tropospheric models on precise point positioning in kinematic mode, Survey Review, 40(308), 173-187.Web of ScienceGoogle Scholar

  • Juan, J. M., Hernandez-Pajares, M., Sanz, J., Ramos-Bosch, P., Aragon-Angel, A., Orus, R., Ochieng, W., Feng, S., Jofre, M., Coutinho, P., Samson, J., and Tossaint, M., (2012). Enhanced Precise Point Positioning for GNSS Users, IEEE Transactions on Geoscience and Remote Sensing, 50(10), 4213-4222.Google Scholar

  • Kalita J.Z., Rzepecka Z., and Krzan G., (2014). Evaluation of the possibility of using the predicted tropospheric delays in real time GNSS positioning, Artificial Satellites, 49(4), 179-189Google Scholar

  • Kanzaki M, Matsushita Y., Kakimoto H., Rocken C., Iwabuchi T., Mervart L., Johnson J., and Lukes Z. (2011). GNSS Positioning of Ocean Buoys in Japan for Disaster Prevention, Proceedings of 24th International Technical Meeting of The Satellite Division of the Institute of Navigation, Institute of Navigation, Portland, OR, 717-723.Google Scholar

  • Kouba, J. (2009). A guide to using International GNSS Service (IGS) products, Geodetic Survey Division, Natural Resources Canada, http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdfGoogle Scholar

  • Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., and Nilsson, T. (2013). GPT2: Empirical slant delay model for radio space geodetic techniques, Geophysical Research Letters, 40(6), 1069-1073Web of ScienceCrossrefPubMedGoogle Scholar

  • Laurichesse, D. (2011). The CNES Real-time PPP with Undifferenced Integer Ambiguity Resolution Demonstrator, Proceedings of 24th International Technical Meeting of The Satellite Division of the Institute of Navigation, Institute of Navigation, Portland, OR, 654-662.Google Scholar

  • Leandro, R. F., Santos, M. C., and Langley, R. B. (2006). UNB neutral atmosphere models: development and performance, Proceedings of 2006 National Technical Meeting of The Institute of Navigation, Monterey, CA, 564-573.Google Scholar

  • Leandro, R. F., Santos, M. C., and Langley, R. B. (2007). GAPS: The GPS Analysis and Positioning Software - A Brief Overview, Proceedings of 20th International Technical Meeting of The Satellite Division of the Institute of Navigation, Institute of Navigation, Fort Worth, TX, 1807-1811.Google Scholar

  • Li, X., Zhang, X., and Ge, M. (2011). Regional reference network augmented precise point positioning for instantaneous ambiguity resolution, Journal of Geodesy, 85, 151-158.Web of ScienceGoogle Scholar

  • Mervart, L., and Weber, G. (2011). Real-time combination of GNSS orbit and clock correction streams using a Kalman filter approach, Proceedings of 24th International Technical Meeting of The Satellite Division of the Institute of Navigation, Institute of Navigation, Portland, OR, 707-711.Google Scholar

  • Weber, G., Dettmering, D., and Gebhard, H. (2005). Networked transport of RTCM via Internet Protocol (NTRIP), IAG Symposium, 128, 60-64.Google Scholar

  • Wielgosz P., Paziewski J., and Baryla R. (2011). On Constraining Zenith Tropospheric Delays in Processing of Local GPS Networks with Bernese Software, Survey Review, 43(323), 472-483Web of ScienceGoogle Scholar

  • Wübbena, G., Schmitz, M., and Bagge, A. (2005). PPP-RTK: precise point positioning using state-space representation in RTK networks, Proceedings of 24th International Technical Meeting of The Satellite Division of the Institute of Navigation, Institute of Navigation, Long Beach, CA, 2584-2594.Google Scholar

  • Zhang, H., Gao, Z., Ge, M., Niu, X., Huang, L., Tu, R., and Li, X. (2013). On the Convergence of Ionospheric Constrained Precise Point Positioning (IC-PPP) Based on Undifferential Uncombined Raw GNSS Observations, Sensors (Basel), 13(11): 15708-15725.Web of SciencePubMedCrossrefGoogle Scholar

  • Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research, 102, 5005-5018. Google Scholar

About the article

Received: 2015-02-13

Accepted: 2015-03-01

Published Online: 2015-06-23

Published in Print: 2015-06-01


Citation Information: Artificial Satellites, ISSN (Online) 2083-6104, DOI: https://doi.org/10.1515/arsa-2015-0005.

Export Citation

© Artificial Satellites. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
J Z Kalita and Z Rzepecka
Measurement Science and Technology, 2017, Volume 28, Number 4, Page 045102

Comments (0)

Please log in or register to comment.
Log in