ALLEN, C.D. − MACALADY, A. − CHENCHOUNI, H. − BACHELET, D. − MCDOWELL, N. − VENNETIER, M. − GONZALES, P. − HOGG, T. − RIGLING, A. − BRESHEARS, D.D. − FENSHAM, R. − ZHANG, Z. − KITZBERGER, T. − LIM, J.-H. − CASTRO, J. − ALLARD, G. − RUNNING, S.W. − SEMERCI, A. − COBB, N. (2010): A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660-684.Web of ScienceGoogle Scholar
ARAUJO, M.B. − CABEZA, M. − THUILLER, W. − HANNAH, L. − WILLIAMS, P.H. (2004): Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology 10: 1618-1626.Google Scholar
BARTHOLY, J. − PONGRÁCZ, R. − GELYBÓ, GY. (2007): Regional climate change expected in Hungary for 2071-2100. Applied Ecology and Environmental Research 5(1): 1-17.Google Scholar
BENISTON, M. - STEPHENSON D.B. − CHRISTENSEN, O.B. − FERRO, C.A.T − FREI, C. − GOYETTE, S. − HALSNAES, K. − HOLT, T. − JYLHÄ, K. − KOFFI, B. − PALUTIKOF, J. − SCHÖLL, R. − SEMMLER, T. - WOTH, K. (2007): Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change 81: 71-95 doi: 10.1007/s10584-006-9226-z.CrossrefWeb of ScienceGoogle Scholar
BERKI, I. - RASZTOVITS, E. - MÓRICZ, N. - MÁTYÁS, CS. (2009): Determination of the drought tolerance limit of beech forests and forecasting their future distribution in Hungary. Cereal Research Communications 37: 613-616.Google Scholar
BRÉDA, N. - HUC, R. - GRANIER, A. - DREYER, E. (2006): Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science 63: 625-644.Google Scholar
CZÚCZ, B. − GÁLHIDY, L. − MÁTYÁS, CS. (2010): Limiting climating factors and potential future distribution of beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Mattuscha) Liebl.) forests near their low altitude - xeric limit in Central Europe. Annals of Forest Science 68(1): 99-108.Google Scholar
DEFINIENS (2005): eCognition Professional, Munich.Google Scholar
FÜHRER, E. − HORVÁTH, L. − JAGODICS, A. − MACHON, A. - SZABADOS, I. (2011): Application of a new aridity index in Hungarian forestry practice. Időjárás 115 (3): 205-216.Google Scholar
FÜHRER, E. − JAGODICS, A. - JUHASZ, I. − MAROSI, GY. − HORVÁTH, L. (2011): Ecological and economical impacts of climate change on Hungarian forestry practice. Időjárás 117 (2): 159-174.Google Scholar
GÁLOS B. - LORENZ P.H. - JACOB, D. (2007): Will dry events occur more often in Hungary in the future? Environmental Research Letters 2 034006 (9 pp.) GUISAN, A. − ZIMMERMANN, N.E. (2000): Predictive habitat distribution models in ecology.Ecological Modeling 135: 147-186.Google Scholar
HOGG, E.H. − BRANDT, J.P. − KOCHTUBAJDA, B. (2005): Factors affecting interannual variation in growth of western Canadian aspen forests during 1951-2000. Canadian Journal of Forest Research 35: 610-622.Google Scholar
IPCC − Summary for Policymakers. - In: Climate Change (2007): The Physical Science Basis.Contribution of Working Group I. [Solomon, S. - Manning, Q.D. - Chen, M. - Marquis, Z. - Averyt, M.K.B.- Miller, H.L. (eds.)]. Cambridge University Press, Cambridge, New York.Google Scholar
JACOB, D. - ANDRAE, U. - ELGERED, G. - FORTELIUS, C. - GRAHAM, L.P. - JACKSON, S.D. - KARSTENS, U. - KOEPKEN, C. - LINDAU, R. - PODZUN, R. - ROCKEL, B. - RUBEL, F. - SASS, H.B. - SMITH, R.N.D. − VAN DEN HURK, B.J.J.M. - YANG, X. (2001): A comprehensive model intercomparison study investigating the water budget during the BALTEX-PIDCAP Period.Meteorology and Atmospheric Physics 77 (1-4): 19-43.Google Scholar
JACOB, D. - BÄRRING, L. - CHRISTENSEN, O.B. - CHRISTENSEN, J.H. − DE CASTRO, M. - DÉQUÉ, M. - GIORGI, F. - HAGEMANN, S. - HIRSCHI, M. - JONES, R. - KJELLSTRÖM, E. - LENDERINK, G. - ROCKEL, B. - SÁNCHEZ, E. - SCHÄR, C. - SENEVIRATNE, S.I. - SOMMOT, S. − VAN ULDEN, A. − VAN DEN HURK, B. (2007): An inter-comparison of regional climate models for Europe: model performance in present-day climate. Climatic Change 81:31-52. doi:10.1007/s10584-006-9213-4.CrossrefGoogle Scholar
KOSKELA, J. − BUCK, A. − TEISSIER DU CROS, E. (eds.) (2007): Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Biodiversity International, Rome, Italy.Google Scholar
KRAMER, K. − DEGEN, B. − BUSCHBOM, J. − HICKLER, T. − THUILLER, W. − SYKES, M. − DE WINTER, W. (2010): Modeling exploration of the future of European beech (Fagus sylvatica L.) under climate change - Range, abundance, genetic diversity and adaptive response. Forest Ecology and Management 259: 2213-2222.Web of ScienceGoogle Scholar
LAKATOS, F. − MOLNÁR, M. (2009): Mass mortality of beech on Southwest Hungary. Acta Silvatica& Lignaria Hungarica 5: 75-82.Google Scholar
LINDNER, M. − MAROSCHEK, M. − NETHERER, S. − KREMER, A. − BARBATI, A. − GARCIA-GONZALO, J. − SEIDL, R. − DELZON, S. − CORONA, P. − KOLSTROM, M. − LEXER, M.J. − MARCHETTI, M. (2010): Climate change impacts adaptive capacity and vulnerability of European forest ecosystems.Forest Ecology Management 259 (4): 698-709.Web of ScienceGoogle Scholar
LOEHLE, CS. (1998): Height growth tradeoffs determine northern and southern range limits for trees.Journal of Biogeography 25: 735-742.Google Scholar
MÁTYÁS, CS. (2007): What do field trials tell about the future use of forest reproductive material? In: Koskela, J, Buck A. and Teissier du Cros, E. (eds.): Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Biodiversity International, Rome, Italy. pp. 53-69. MÁTYÁS, CS. − NAGY, L. − UJVÁRI-JÁRMAY, É. (2008): Genetic background of response of trees to aridification at the xeric forest limit and consequences for bioclimatic modeling. In: Strelcova K, Mátyás Cs, Kleidon A (eds.) Bioclimatology and natural hazards. Springer Verlag, Berlin pp. 179-196.Google Scholar
MÁTYÁS, CS. − VENDRAMIN, G.G. − FADY, B. (2009): Forests at the limit: evolutionary-genetic consequences of environmental changes at the receding (xeric) edge of distribution. Annals of Forest Science 66: 800-80.Web of ScienceGoogle Scholar
MÁTYÁS, CS. (2010). Forecasts needed for retreating forests (Opinion). Nature 464: 1271Google Scholar
OHLEMÜLLER, R. − GRITTI, E.S. − SYKES, M.T. − THOMAS, C.D. (2006): Quantifying components of risk for European woody species under climate change. Global Change Biology 12: 1788-1799.CrossrefGoogle Scholar
PÉCZELY, GY. (1979): Éghajlattan. Climatology - in Hungarian. Nemzeti Tankönyvkiadó, Budapest.Google Scholar
PEARSON, R. G. - DAWSON, T. P. (2003): Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global Ecology and Biogeography 12 (5): 361-371.Web of ScienceCrossrefGoogle Scholar
PENUELAS, J. - OGAYA, R. - BOADA, M. - JUMP, A.S. (2007): Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30: 829-837.Web of ScienceGoogle Scholar
RASZTOVITS, E. − MÓRICZ, N. − BERKI, I. − PÖTZELSBERGER E. − MÁTYÁS CS. (2012): Evaluating the performance of stochastic distribution models for European beech at low-elevation xeric limits.Időjárás 116(3): 173-194.Google Scholar
REHFELDT, G.E. − TCHEBAKOVA, N.M. − MILYUTIN, L.I. − PARFENOVA, E.I. − WYKOFF, W.R. − KOUZMINA, N.A. (2003): Assessing population responses to climate in Pinus silvestris and Larix spp. of Eurasia with climate transfer models. Eurasian Journal of Forestry Research 6: 83-98.Google Scholar
RENNENBERG, H. - SEILER, W. - MATYSSEK, R. - GESSLER, A. - KREUZWIESER, J. (2004): Die Buche (Fagus sylvatica L.) - ein Waldbaum ohne Zukunft im südlichen Mitteleuropa? Allgemeine Forst- und Jagdzeitung 175: 210-224.Google Scholar
RICKEBUSCH, S. − GELLRICH, M. − LISCHKE, H. − GUISAN, A. − ZIMMERMANN, N.E. (2007): Combining probabilistic land-use change and tree population dynamics modeling to simulate responses in mountain forests. Ecological Modeling 209: 157-168.Google Scholar
SCHÄR, C. − VIDALE P.L. − LÜTHI, D. − FREI, C. − HÄBERLI, C. − LINIGER, M.A. − APPENZELLER, C. (2004): The role of increasing temperature variability in European summer heatwaves. Nature 427: 332-336 doi: 10.1038/nature02300.CrossrefGoogle Scholar
STOJANOVIC, D.B. − KRZIC, A. − MATOVIC, B. − ORLOVIC, S. − DUPUTIE, A. − DJURDJEVIC, V. − GALIC, Z. − STOJNIC, S. (2013): Prediction of the European beech (Fagus sylvatica L.) xeric limit using a regional climate model: An example from southeast Europe. Agricultural and Forest Meteorology 176: 94-103.Web of ScienceGoogle Scholar
THUILLER, W. − LAVOREL, S. − ARAUJO, M.B. − SYKES, M.T. − PRENTICE, I.C. (2005): Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences 102: 8245-8250. Google Scholar
Comments (0)