Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Silvatica et Lignaria Hungarica

The Journal of University of West Hungary

2 Issues per year


CiteScore 2016: 0.50

SCImago Journal Rank (SJR) 2016: 0.241
Source Normalized Impact per Paper (SNIP) 2016: 0.460

Open Access
Online
ISSN
1787-064X
See all formats and pricing
More options …

Modelling the Potential Distribution of Three Climate Zonal Tree Species for Present and Future Climate in Hungary

Norbert Móricz / Ervin Rasztovits
  • Institute of Environmental and Earth Sciences, Faculty of Forestry, University of West Hungary, Sopron, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Borbála Gálos
  • Institute of Environmental and Earth Sciences, Faculty of Forestry, University of West Hungary, Sopron, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Imre Berki
  • Institute of Environmental and Earth Sciences, Faculty of Forestry, University of West Hungary, Sopron, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Attila Eredics
  • Institute of Environmental and Earth Sciences, Faculty of Forestry, University of West Hungary, Sopron, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfgang Loibl
Published Online: 2014-02-27 | DOI: https://doi.org/10.2478/aslh-2013-0007

Abstract

The potential distribution and composition rate of beech, sessile oak and Turkey oak were investigated for present and future climates (2036-2065 and 2071-2100) in Hungary. Membership functions were defined using the current composition rate (percentage of cover in forest compartments) of the tree species and the long-term climate expressed by the Ellenberg quotient to model the present and future tree species distribution and composition rate. The simulation results using the regional climate model REMO showed significant decline of beech and sessile oak in Hungary during the 21st century. By the middle of the century only about 35% of the present beech and 75% of the sessile oak stands will remain above their current potential distribution limit. By the end of the century beech forests may almost disappear from Hungary and sessile oak will also be found only along the Southwest border and in higher mountain regions. On the contrary the present occurrences of Turkey oak will be almost entirely preserved during the century however its distribution area will shift to the current sessile oak habitats.

Kivonat

Három klímazonális fafaj hazai potenciális elterjedésének modellezése jelenlegi és jövőbeni klímában. A bükk, a kocsánytalan tölgy és a csertölgy potenciális elterjedését és elegyarányát vizsgáltuk Magyarországon a jelenlegi és a jövőben (2036-2065 és 2071-2100) várható klimatikus körülmények között. A vizsgált fafajok jelenlegi elegyarányának (az erdőrészletben elfoglalt terület aránya, %) és a klímának (az Ellenberg index-el kifejezve) az összefüggését használtuk a fafajok elterjedésének modellezéséhez. A REMO regionális klímamodellel történt szimuláció a bükk és a kocsánytalan tölgy elterjedési területének és elegyarányának jelentős csökkenését mutatta a 21. század folyamán. A század közepére a jelenlegi bükk állományok 35%-a, a kocsánytalan tölgy állományok 75%-a maradna a jelenlegi alsó elterjedési határuk felett. A század végére a bükk szinte teljesen eltűnhet Magyarország területéről és a kocsánytalan tölgy is a magasabb hegyvidékekre és a délnyugati határ menti területre húzódhat vissza. Ellenben a csertölgy jelenlegi állományait várhatóan nem érinti számottevően a klímaváltozás, viszont az elterjedési területe a jelenlegi kocsánytalan tölgyes állományok helyét foglalhatja el.

Keywords : potential tree species distribution; composition rate; beech; sessile oak; Turkey oak

Keywords : potenciális fafaj elterjedés; elegyarány; bükk; kocsánytalan tölgy; csertölgy

References

  • ALLEN, C.D. − MACALADY, A. − CHENCHOUNI, H. − BACHELET, D. − MCDOWELL, N. − VENNETIER, M. − GONZALES, P. − HOGG, T. − RIGLING, A. − BRESHEARS, D.D. − FENSHAM, R. − ZHANG, Z. − KITZBERGER, T. − LIM, J.-H. − CASTRO, J. − ALLARD, G. − RUNNING, S.W. − SEMERCI, A. − COBB, N. (2010): A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660-684.Web of ScienceGoogle Scholar

  • ARAUJO, M.B. − CABEZA, M. − THUILLER, W. − HANNAH, L. − WILLIAMS, P.H. (2004): Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology 10: 1618-1626.Google Scholar

  • BARTHOLY, J. − PONGRÁCZ, R. − GELYBÓ, GY. (2007): Regional climate change expected in Hungary for 2071-2100. Applied Ecology and Environmental Research 5(1): 1-17.Google Scholar

  • BENISTON, M. - STEPHENSON D.B. − CHRISTENSEN, O.B. − FERRO, C.A.T − FREI, C. − GOYETTE, S. − HALSNAES, K. − HOLT, T. − JYLHÄ, K. − KOFFI, B. − PALUTIKOF, J. − SCHÖLL, R. − SEMMLER, T. - WOTH, K. (2007): Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change 81: 71-95 doi: 10.1007/s10584-006-9226-z.CrossrefWeb of ScienceGoogle Scholar

  • BERKI, I. - RASZTOVITS, E. - MÓRICZ, N. - MÁTYÁS, CS. (2009): Determination of the drought tolerance limit of beech forests and forecasting their future distribution in Hungary. Cereal Research Communications 37: 613-616.Google Scholar

  • BRÉDA, N. - HUC, R. - GRANIER, A. - DREYER, E. (2006): Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science 63: 625-644.Google Scholar

  • CZÚCZ, B. − GÁLHIDY, L. − MÁTYÁS, CS. (2010): Limiting climating factors and potential future distribution of beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Mattuscha) Liebl.) forests near their low altitude - xeric limit in Central Europe. Annals of Forest Science 68(1): 99-108.Google Scholar

  • DEFINIENS (2005): eCognition Professional, Munich.Google Scholar

  • FÜHRER, E. − HORVÁTH, L. − JAGODICS, A. − MACHON, A. - SZABADOS, I. (2011): Application of a new aridity index in Hungarian forestry practice. Időjárás 115 (3): 205-216.Google Scholar

  • FÜHRER, E. − JAGODICS, A. - JUHASZ, I. − MAROSI, GY. − HORVÁTH, L. (2011): Ecological and economical impacts of climate change on Hungarian forestry practice. Időjárás 117 (2): 159-174.Google Scholar

  • GÁLOS B. - LORENZ P.H. - JACOB, D. (2007): Will dry events occur more often in Hungary in the future? Environmental Research Letters 2 034006 (9 pp.) GUISAN, A. − ZIMMERMANN, N.E. (2000): Predictive habitat distribution models in ecology.Ecological Modeling 135: 147-186.Google Scholar

  • HOGG, E.H. − BRANDT, J.P. − KOCHTUBAJDA, B. (2005): Factors affecting interannual variation in growth of western Canadian aspen forests during 1951-2000. Canadian Journal of Forest Research 35: 610-622.Google Scholar

  • IPCC − Summary for Policymakers. - In: Climate Change (2007): The Physical Science Basis.Contribution of Working Group I. [Solomon, S. - Manning, Q.D. - Chen, M. - Marquis, Z. - Averyt, M.K.B.- Miller, H.L. (eds.)]. Cambridge University Press, Cambridge, New York.Google Scholar

  • JACOB, D. - ANDRAE, U. - ELGERED, G. - FORTELIUS, C. - GRAHAM, L.P. - JACKSON, S.D. - KARSTENS, U. - KOEPKEN, C. - LINDAU, R. - PODZUN, R. - ROCKEL, B. - RUBEL, F. - SASS, H.B. - SMITH, R.N.D. − VAN DEN HURK, B.J.J.M. - YANG, X. (2001): A comprehensive model intercomparison study investigating the water budget during the BALTEX-PIDCAP Period.Meteorology and Atmospheric Physics 77 (1-4): 19-43.Google Scholar

  • JACOB, D. - BÄRRING, L. - CHRISTENSEN, O.B. - CHRISTENSEN, J.H. − DE CASTRO, M. - DÉQUÉ, M. - GIORGI, F. - HAGEMANN, S. - HIRSCHI, M. - JONES, R. - KJELLSTRÖM, E. - LENDERINK, G. - ROCKEL, B. - SÁNCHEZ, E. - SCHÄR, C. - SENEVIRATNE, S.I. - SOMMOT, S. − VAN ULDEN, A. − VAN DEN HURK, B. (2007): An inter-comparison of regional climate models for Europe: model performance in present-day climate. Climatic Change 81:31-52. doi:10.1007/s10584-006-9213-4.CrossrefGoogle Scholar

  • KOSKELA, J. − BUCK, A. − TEISSIER DU CROS, E. (eds.) (2007): Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Biodiversity International, Rome, Italy.Google Scholar

  • KRAMER, K. − DEGEN, B. − BUSCHBOM, J. − HICKLER, T. − THUILLER, W. − SYKES, M. − DE WINTER, W. (2010): Modeling exploration of the future of European beech (Fagus sylvatica L.) under climate change - Range, abundance, genetic diversity and adaptive response. Forest Ecology and Management 259: 2213-2222.Web of ScienceGoogle Scholar

  • LAKATOS, F. − MOLNÁR, M. (2009): Mass mortality of beech on Southwest Hungary. Acta Silvatica& Lignaria Hungarica 5: 75-82.Google Scholar

  • LINDNER, M. − MAROSCHEK, M. − NETHERER, S. − KREMER, A. − BARBATI, A. − GARCIA-GONZALO, J. − SEIDL, R. − DELZON, S. − CORONA, P. − KOLSTROM, M. − LEXER, M.J. − MARCHETTI, M. (2010): Climate change impacts adaptive capacity and vulnerability of European forest ecosystems.Forest Ecology Management 259 (4): 698-709.Web of ScienceGoogle Scholar

  • LOEHLE, CS. (1998): Height growth tradeoffs determine northern and southern range limits for trees.Journal of Biogeography 25: 735-742.Google Scholar

  • MÁTYÁS, CS. (2007): What do field trials tell about the future use of forest reproductive material? In: Koskela, J, Buck A. and Teissier du Cros, E. (eds.): Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Biodiversity International, Rome, Italy. pp. 53-69. MÁTYÁS, CS. − NAGY, L. − UJVÁRI-JÁRMAY, É. (2008): Genetic background of response of trees to aridification at the xeric forest limit and consequences for bioclimatic modeling. In: Strelcova K, Mátyás Cs, Kleidon A (eds.) Bioclimatology and natural hazards. Springer Verlag, Berlin pp. 179-196.Google Scholar

  • MÁTYÁS, CS. − VENDRAMIN, G.G. − FADY, B. (2009): Forests at the limit: evolutionary-genetic consequences of environmental changes at the receding (xeric) edge of distribution. Annals of Forest Science 66: 800-80.Web of ScienceGoogle Scholar

  • MÁTYÁS, CS. (2010). Forecasts needed for retreating forests (Opinion). Nature 464: 1271Google Scholar

  • OHLEMÜLLER, R. − GRITTI, E.S. − SYKES, M.T. − THOMAS, C.D. (2006): Quantifying components of risk for European woody species under climate change. Global Change Biology 12: 1788-1799.CrossrefGoogle Scholar

  • PÉCZELY, GY. (1979): Éghajlattan. Climatology - in Hungarian. Nemzeti Tankönyvkiadó, Budapest.Google Scholar

  • PEARSON, R. G. - DAWSON, T. P. (2003): Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global Ecology and Biogeography 12 (5): 361-371.Web of ScienceCrossrefGoogle Scholar

  • PENUELAS, J. - OGAYA, R. - BOADA, M. - JUMP, A.S. (2007): Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30: 829-837.Web of ScienceGoogle Scholar

  • RASZTOVITS, E. − MÓRICZ, N. − BERKI, I. − PÖTZELSBERGER E. − MÁTYÁS CS. (2012): Evaluating the performance of stochastic distribution models for European beech at low-elevation xeric limits.Időjárás 116(3): 173-194.Google Scholar

  • REHFELDT, G.E. − TCHEBAKOVA, N.M. − MILYUTIN, L.I. − PARFENOVA, E.I. − WYKOFF, W.R. − KOUZMINA, N.A. (2003): Assessing population responses to climate in Pinus silvestris and Larix spp. of Eurasia with climate transfer models. Eurasian Journal of Forestry Research 6: 83-98.Google Scholar

  • RENNENBERG, H. - SEILER, W. - MATYSSEK, R. - GESSLER, A. - KREUZWIESER, J. (2004): Die Buche (Fagus sylvatica L.) - ein Waldbaum ohne Zukunft im südlichen Mitteleuropa? Allgemeine Forst- und Jagdzeitung 175: 210-224.Google Scholar

  • RICKEBUSCH, S. − GELLRICH, M. − LISCHKE, H. − GUISAN, A. − ZIMMERMANN, N.E. (2007): Combining probabilistic land-use change and tree population dynamics modeling to simulate responses in mountain forests. Ecological Modeling 209: 157-168.Google Scholar

  • SCHÄR, C. − VIDALE P.L. − LÜTHI, D. − FREI, C. − HÄBERLI, C. − LINIGER, M.A. − APPENZELLER, C. (2004): The role of increasing temperature variability in European summer heatwaves. Nature 427: 332-336 doi: 10.1038/nature02300.CrossrefGoogle Scholar

  • STOJANOVIC, D.B. − KRZIC, A. − MATOVIC, B. − ORLOVIC, S. − DUPUTIE, A. − DJURDJEVIC, V. − GALIC, Z. − STOJNIC, S. (2013): Prediction of the European beech (Fagus sylvatica L.) xeric limit using a regional climate model: An example from southeast Europe. Agricultural and Forest Meteorology 176: 94-103.Web of ScienceGoogle Scholar

  • THUILLER, W. − LAVOREL, S. − ARAUJO, M.B. − SYKES, M.T. − PRENTICE, I.C. (2005): Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences 102: 8245-8250. Google Scholar

About the article

Published Online: 2014-02-27

Published in Print: 2013-12-01


Citation Information: Acta Silvatica et Lignaria Hungarica, Volume 9, Issue 1, Pages 85–96, ISSN (Print) 1787-064X, DOI: https://doi.org/10.2478/aslh-2013-0007.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dehan Stojanović, Bratislav Matović, Saša Orlović, Aleksandra Kržič, Branislav Trudić, Zoran Galić, Srđan Stojnić, and Saša Pekeč
South-east European forestry, 2014, Volume 5, Number 2

Comments (0)

Please log in or register to comment.
Log in