Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Silvatica et Lignaria Hungarica

The Journal of University of West Hungary

2 Issues per year


CiteScore 2016: 0.50

SCImago Journal Rank (SJR) 2016: 0.241
Source Normalized Impact per Paper (SNIP) 2016: 0.460

Open Access
Online
ISSN
1787-064X
See all formats and pricing
More options …

Mapping Forest Regeneration from Terrestrial Laser Scans

Gábor Brolly
  • Corresponding author
  • Department of Forest Opening Up, Institute of Geomatics and Civil Engineering, Faculty of Forestry, University of West Hungary, Sopron, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Géza Király
  • Department of Forest Opening Up, Institute of Geomatics and Civil Engineering, Faculty of Forestry, University of West Hungary, Sopron, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kornél Czimber
  • Department of Forest Opening Up, Institute of Geomatics and Civil Engineering, Faculty of Forestry, University of West Hungary, Sopron, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-02-27 | DOI: https://doi.org/10.2478/aslh-2013-0011

Abstract

Location, spread, abundance and density of forest regeneration are key factors in understanding forest dynamics as well as in operational management of uneven-aged stands. Simulation of forest growth, silviculture and planning of skid road networks require accurate and objective methods for locating forest regeneration. Terrestrial laser scanning has high potential for tree mapping, however, the development of automatic processing methods has been focused on mature trees so far. This study introduces an automatic procedure to locate individual trees with 3-6 meter height from terrestrial laser scanner data. The method has been validated on three sample quadrates representing different stand structures and it succeeded in detecting 79-90% of trees extracted manually from the point cloud. Out of the investigated stand features, stem density had the strongest impact on the performance, while branching intensity slightly affected the detection rate. The results highlight that terrestrial laser scanning has the ability for the quantitative evaluation of regeneration, providing a prospective tool for surveying forests of contiguous cover.

Kivonat

Erdei újulat térképezése földi lézeres letapogatás adataiból. Az erdei újulati foltok helye, kiterjedése, borítottsága és törzsszáma kulcsfontosságú tényezők az erdődinamikai folyamatok feltárásában és a többkorú faállományok kezelésében. A fatermési modellek előállítása, az üzemi gyakorlatban végzett erdőművelés valamint erdőfeltárás pontos és objektív módszereket kíván az újulat helyének meghatározására. A földi lézeres letapogatás kiválóan alkalmas törzstérképek előállítására, ám az adatok feldolgozásához szükséges eljárásokat eddig csak szálerdőkre fejlesztettek ki. A tanulmány olyan automatikus eljárást mutat be, ami 3-6 méter magasságú faegyedek lézeres letapogatás adataiból történő azonosítását teszi lehetővé. Három, különböző jellegű újulati foltban létesített mintaterületen a ponthalmaz vizuális interpretációjával azonosított törzsek 79-90%-át sikerült automatikus úton felismerni. Az eljárás teljesítményét a vizsgált állományjellemzők közül elsősorban a törzsszám befolyásolta, míg az ágak mennyiségének hatása elenyésző. Az elért eredmények rámutatnak, hogy a földi lézeres letapogatás alkalmas az újulat mennyiségének felmérésére, így a folyamatos borítású erdők leírásának ígéretes eszköze lehet.

: LIDAR; TLS; forestry; tree detection; regeneration; voxel

: LIDAR; földi lézerszkennelés; erdészet; újulat; faegyed kimutatása; voxel

References

  • ASCHOFF, T. - SPIECKER, H. (2004): Algorithms for the automatic detection of trees in laser scanner data. In: Proceedings of the ISPRS working group VIII/2, "Laser-Scanners for forest and Landscape assessment". Freiburg, Germany. 3-6 October 2004. 71-75.Google Scholar

  • BIENERT, A. - SCHELLER, S. - KEANE, E. - MOHAN, F. - NUGENT, C. (2007): Tree detection and diameter estimations by analysis of forest terrestrial laserscanner point clouds. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (3/W52), 50-55.Google Scholar

  • BROLLY, G. - KIRÁLY, G. (2009a): Algorithms for stem mapping by means of Terrestrial Laser Scanning. Acta Silvatica et Lignaria Hungarica 5: 119-130.Google Scholar

  • BROLLY, G. - KIRÁLY, G. (2009b): Lézeres letapogatás feldolgozása erdei környezetben. [Processing laser scans over forested environment.] In: Lakatos, F. - Kui, B. (eds.): Nyugat-magyarországi Egyetem, Erdőmérnöki Kar: Kari Tudományos Konferencia Kiadvány. Sopron. 12 October 2009. 29-34. (in Hungarian)Google Scholar

  • BROLLY, G. (2013): Locating and parameter retrieval of individual trees from terrestrial laser scanner data. Ph.D. dissertation, University of West Hungary, Sopron, Hungary, 104 p. Online: http://ilex.efe.hu/PhD/emk/brollygabor/disszertacio.pdf Google Scholar

  • BUCKSCH, A. - FLECK, S. (2011): Automated detection of branch dimensions in woody skeletons of fruit tree canopies. Photogrammetric Engineering and Remote Sensing 77 (3): 229-240. CrossrefGoogle Scholar

  • CORMEN, T. H. - LEISERSON, C.F. - RIVEST, R.L. (1990): Algoritmusok. [Algorithms] Műszaki Könyvkiadó, Budapest. 884 p. (in Hungarian) Google Scholar

  • COTE, J.F. - WIDLOWSKI, J.L. - FOURNIER, R.A. - VERSTRAETE, M.M. (2009): The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sensing of Environment 113: 1067-1081.Web of ScienceCrossrefGoogle Scholar

  • DANSON, F.M. - HETHERINGTON, D. - MORSDORF, F. - KOETZ, B. - ALLGÖWER, B. (2007): Forest Canopy Gap Fraction From Terrestrial Laser Scanning. IEEE Geoscience and remote sensing letters 4 (1): 157-161.Web of ScienceCrossrefGoogle Scholar

  • GORTE, B. - PFEIFER, N. (2004): Structuring laser-scanned trees using 3d mathematical morphology.ISPRS- International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35 (Part B): 39-45.Google Scholar

  • HENNING, J.G. - RADTKE, P.J. (2006): Ground-based laser imaging for assessing three-dimensional forest canopy structure. Photogrammetric Engineering and Remote Sensing 72 (12): 1349-1358.CrossrefGoogle Scholar

  • HOPKINSON, C. - CHASMER, L. - YOUNG-POW, C. - TREITZ, P. (2004): Assessing forest metrics with a ground-based scanning LIDAR. Canadian Journal of Forest Research. 34: 573-583.CrossrefGoogle Scholar

  • JAIN, R. - KASTURI, R. - SCHUNCK, B.G. (1995): Machine Vision. McGraw-Hill, Inc., ISBN 0-07-032018-7; 549 p.Google Scholar

  • KAUFMAN, A. - COHEN, D. - YAGEL, R. (1993): Volume graphics. IEEE Computer 26 (7): 51-64.CrossrefGoogle Scholar

  • KIRÁLY, G. - BROLLY, G. (2007): Tree height estimation methods for terrestrial laser scanning in a forest reserve. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 36 (3/W52): 211-215.Google Scholar

  • LINDBERG, E. - HOLMGREN, J. - OLOFSSON, K. - OLSSON, H. (2012): Estimation of stem attributes using a combination of terrestrial and airborne laser scanning. European Journal of Forest Research 131 (6): 1917-1931.Web of ScienceCrossrefGoogle Scholar

  • PFEIFER, N. - GORTE, B. - WINTERHALDER, D. (2004): Automatic reconstruction of single trees from terrestrial laser scanner data. ISPRS- International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35 (Part B): 114-119.Google Scholar

  • PRO SILVA (2012): Pro Silva Principles. Pro Silva Europe. 69 p. Online: www.prosilvaeurope.org Google Scholar

  • PUESCHEL, P. - NEWNHAM, G. - ROCK, G. - UDELHOVEN, T. - WERNER W. - HILL, J. (2013): The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans. ISPRS Journal of Photogrammetry and Remote Sensing 77 (1): 44-56.Web of ScienceCrossrefGoogle Scholar

  • RIEGL (2010): Data sheet LMS-Z420i, 03/05/2010. Riegl Laser Measurement System GmbH, Horn, Austria. Online: www.riegl.com Google Scholar

  • SIMONSE, M. - ASCHOFF, T. - SPIECKER, H. - THIES, M. (2003): Automatic determination of forest inventory parameters using terrestrial laser scanning. In: Proceedings of the ScandLaser Scientific Workshop on Airborne Laser Scanning of Forests. Umea, Sweden. 2-4 September, 2003. 271-257.Google Scholar

  • THIES, M. - SPIECKER, H. (2004): Evaluation and future prospects of terrestrial laser scanning for standardized forest inventories. In: Proceedings of the ISPRS working group VIII/2, "Laser- Scanners for forest and Landscape assessment". Freiburg, Germany. 3-6 October 2004. 192-198.Google Scholar

  • WATT, P.J. - DONOGHUE, D.N.M. (2005): Measuring forest structure with terrestrial laser scanning.International Journal of Remote Sensing 26 (7): 1437-1446. CrossrefGoogle Scholar

About the article

Published Online: 2014-02-27

Published in Print: 2013-12-01


Citation Information: Acta Silvatica et Lignaria Hungarica, ISSN (Print) 1787-064X, DOI: https://doi.org/10.2478/aslh-2013-0011.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Vaclav Petras, Douglas J. Newcomb, and Helena Mitasova
Open Geospatial Data, Software and Standards, 2017, Volume 2, Number 1
[2]
Johannes Heinzel and Markus Huber
Remote Sensing, 2016, Volume 9, Number 1, Page 9
[3]
Martin Ehbrecht, Peter Schall, Julia Juchheim, Christian Ammer, and Dominik Seidel
Forest Ecology and Management, 2016, Volume 380, Page 212
[4]
Jianlei Kong, Xiaokang Ding, Jinhao Liu, Lei Yan, and Jianli Wang
Sensors, 2015, Volume 15, Number 7, Page 15661

Comments (0)

Please log in or register to comment.
Log in