Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Astronomy

formerly Baltic Astronomy

Editor-in-Chief: Barbuy, Beatriz


IMPACT FACTOR 2017 (Baltic Astronomy): 0.417
5-year IMPACT FACTOR (Baltic Astronomy): 0.486

CiteScore 2017: 0.16

SCImago Journal Rank (SJR) 2017: 0.131
Source Normalized Impact per Paper (SNIP) 2017: 0.109

ICV 2017: 121.03

Open Access
Online
ISSN
2543-6376
See all formats and pricing
More options …
Volume 20, Issue 3

Issues

Influence of Microlensing on Spectral Anomalies of the Lensed Objects

S. Simić
  • Corresponding author
  • Faculty of Science, Department of Physics, University of Kragujevac, Radoja Domanovića 12, Kragujevac 34000, Serbia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ L. Č. Popović / P. Jovanović
Published Online: 2017-03-23 | DOI: https://doi.org/10.1515/astro-2017-0324

Abstract

Here we consider the influence of microlensing on the spectrum of a lensed object with the angular size 5 μas accepting that the composite emission of this object originates from three different regions arranged around its center. We assume that the lensed object has three concentric regions with a black-body emission; the temperatures of these regions are 10 000 K, 7500 K and 5000 K. We investigate how the integral spectral energy distribution (SED) of such stratified source changes due to microlensing by a group of solarmass stars. We find that the SED and flux ratios in the photometric B, V and R passbands show considerable changes during a microlens event. This indicates that the flux anomaly observed in some lensed quasars may be caused by microlensing of a stratified object.

Keywords: gravitational lensing; microlensing

References

  • Abajas C., Mediavilla E. G., Muñoz J. A. Popović L. Č., Oscoz A. 2002, ApJ, 576, 640Google Scholar

  • Abajas C., Mediavilla E., Muñoz J. A. et al. 2007, ApJ, 658, 748Google Scholar

  • Kratzer R. M., Richards G. T., Goldberg D. M. et al. 2011, ApJ, 728, L18Google Scholar

  • Lewis G. F., Irwin M. J., Hewett P. C., Foltz C. B. 1998, MNRAS, 295, 573Google Scholar

  • Mediavilla E., Arribas S., del Burgo C. et al. 1998, ApJ, 503, L27Google Scholar

  • Mosquera A. M., Mu˜noz J. A., Mediavilla E., Kochanek C. S. 2011, ApJ, 728, 145Google Scholar

  • Popović L. Č., Mediavilla E. G., Muñoz J. 2001, A&A, 378, 295Google Scholar

  • Popović L. Č., Simić S., Jovanović P. et al. 2011, in preparationGoogle Scholar

  • Richards G. T., Keeton R. C., Bartosz P. et al. 2004, ApJ, 610, 679Google Scholar

  • Schneider P., Ehlers J., Falco E. E. 1992, Gravitational Lenses, XIV, 560 p., Springer-VerlagGoogle Scholar

  • Schneider P., Weiss A. 1987, A&A, 171, 49.Google Scholar

  • Sluse D., Schmidt R., Courbin F. et al. 2011, A&A, 528, A100Google Scholar

  • Wambsganss J., Paczynski B. 1991, AJ, 102, 86Google Scholar

  • Wisotzki L., Becker T., Christensen L. et al. 2003, A&A, 408, 455Google Scholar

  • Zakharov A. F. 1997, Gravitational Lenses and Microlensing, Yanus-K, Moscow Google Scholar

About the article

Published Online: 2017-03-23

Published in Print: 2011-09-01


Citation Information: Open Astronomy, Volume 20, Issue 3, Pages 481–485, ISSN (Online) 2543-6376, DOI: https://doi.org/10.1515/astro-2017-0324.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in