Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Astronomy

formerly Baltic Astronomy

Editor-in-Chief: Barbuy, Beatriz

IMPACT FACTOR 2017 (Baltic Astronomy): 0.417
5-year IMPACT FACTOR (Baltic Astronomy): 0.486

CiteScore 2017: 0.16

SCImago Journal Rank (SJR) 2017: 0.131
Source Normalized Impact per Paper (SNIP) 2017: 0.109

ICV 2017: 121.03

Open Access
See all formats and pricing
More options …
Volume 20, Issue 3


AGN Dusty Tori as a Clumpy Two-Phase Medium: the 10 μm Silicate Feature

Marko Stalevski
  • Corresponding author
  • Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia Belgium
  • Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, Gent, 9000, Belgium
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacopo Fritz / Maarten Baes / Theodoros Nakos / Luka Č. Popović
Published Online: 2017-03-23 | DOI: https://doi.org/10.1515/astro-2017-0326


We investigated the emission of active galactic nuclei dusty tori in the infrared domain, with a focus on the 10 μm silicate feature. We modeled the dusty torus as a clumpy two-phase medium with high-density clumps and a low-density medium filling the space between the clumps. We used a three-dimensional radiative transfer code to obtain spectral energy distributions and images of tori at different wavelengths. We calculated a grid of models for different parameters and analyzed the influence of these parameters on the shape of the mid-infrared emission. A corresponding set of clumps-only models and models with a smooth dust distribution is calculated for comparison. We found that the dust distribution, the optical depth and a random arrangement of clumps in the innermost region, all have an impact on the shape and strength of the silicate feature. The 10 μm silicate feature can be suppressed for some parameters, but models with smooth dust distribution are also able to produce a wide range of the silicate feature strength.

Keywords: galaxies active; nuclei; Seyfert radiative transfer


  • Baes M., Davies J. I., Dejonghe H. et al. 2003, MNRAS, 343, 1081Google Scholar

  • Baes M., Verstappen J., De Looze I. et al. 2011, ApJS, 196, 22Google Scholar

  • Hao L., Spoon H. W. W., Sloan G. C. et al. 2005, ApJ, 625, L75Google Scholar

  • Horst H., Smette A., Gandhi P., Duschl W. J. 2006, A&A, 457, L17Google Scholar

  • Jaffe W., Meisenheimer K., R¨ottgering H. J. A. et al. 2004, Nature, 429, 47Google Scholar

  • Krolik J. H., Begelman M. C. 1988, ApJ, 329, 702Google Scholar

  • Siebenmorgen R., Haas M., Kr¨ugel E., Schulz B. 2005, A&A, 436, L5Google Scholar

  • Stalevski M., Fritz J., Baes M., Nakos T., Popovi´c L. ˇC. 2011, MNRAS, accepted = arXiv:1109.1286Google Scholar

  • Wada K., Norman C. A. 2002, ApJ, 566, L21Google Scholar

  • Wada K., Papadopoulos P. P., Spaans M. 2009, ApJ, 702, 63Google Scholar

  • Witt A. N., Gordon K. D. 1996, ApJ, 463, 681 Google Scholar

About the article

Received: 2011-08-08

Accepted: 2011-08-15

Published Online: 2017-03-23

Published in Print: 2011-09-01

Citation Information: Open Astronomy, Volume 20, Issue 3, Pages 490–494, ISSN (Online) 2543-6376, DOI: https://doi.org/10.1515/astro-2017-0326.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in