Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Astronomy

formerly Baltic Astronomy

Editor-in-Chief: Barbuy, Beatriz


IMPACT FACTOR 2018: 0.350

CiteScore 2018: 0.24

SCImago Journal Rank (SJR) 2018: 0.202
Source Normalized Impact per Paper (SNIP) 2018: 0.144

ICV 2017: 121.03

Open Access
Online
ISSN
2543-6376
See all formats and pricing
More options …
Volume 22, Issue 1

Issues

Perspective Ground-based Method for Diagnostics of the Lower Ionosphere and the Neutral Atmosphere

N. V. Bakhmetieva / G. I. Grigoriev
  • Radiophysical Research Institute (RRI), B. Pecherskaya str., 25/12a, Nizhny Novgorod, 603950, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. V. Tolmacheva
  • Radiophysical Research Institute (RRI), B. Pecherskaya str., 25/12a, Nizhny Novgorod, 603950, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-02-18 | DOI: https://doi.org/10.1515/astro-2017-0143

Abstract

We present a new perspective ground-based method for diagnostics of the ionosphere and atmosphere parameters. The method uses one of the numerous physical phenomena observed in the ionosphere illuminated by high-power radio waves. It is a generation of the artificial periodic irregularities (APIs) in the ionospheric plasma. The APIs were found while studying the effects of ionospheric high-power HF modification. It was established that the APIs are formed by a standing wave that occurs due to interference between the upwardly radiated radio wave and its reflection off the ionosphere. The API studies are based upon observation of the Bragg backscatter of the pulsed probe radio wave from the artificial periodic structure. Bragg backscatter occurs if the spatial period of the irregularities is equal to half a wavelength of the probe signal. The API techniques makes it possible to obtain the following information: the profiles of electron density from the lower D-region up to the maximum of the F-layer; the irregular structure of the ionosphere including split of the regular E-layer, the sporadic layers; the vertical velocities in the D- and E-regions of the ionosphere; the turbulent velocities, turbulent diffusion coefficients and the turbopause altitude; the neutral temperatures and densities at the E-region altitudes; the parameters of the internal gravity waves and their spectral characteristics; the relative concentration of negative oxygen ions in the D-region. Some new results obtained by the API technique are discussed.

Keywords: instrumentation: detectors; ionosphere: structure

REFERENCES

  • Bakhmet’eva N. V., Belikovich V. V., Benediktov E. A. et al. 1997, Radiophysics and Quantum Electronics, 40, 196Google Scholar

  • Bakhmet’eva N. V., Belikovich V. V., Benediktov E. A. et al. 1998, Radio Sci., 33, 583Google Scholar

  • Bakhmet’eva N. V., Belikovich V. V., Ignat’ev Yu. A., Ponyatov A. A. 1999, Radiophysics and Quantum Electronics, 42, 22Google Scholar

  • Bakhmet’eva N. V., Belikovich V. V., Kagan L. M., Ponyatov A. A. 2005a, Radiophysics and Quantum Electronics, 48, 14Google Scholar

  • Bakhmet’eva N. V., Belikovich V. V., Kagan L. M. et al. 2005b, Radiophysics and Quantum Electronics, 48, 673Google Scholar

  • Bakhmet’eva N. V., Grigor’ev G. I., Tolmacheva A. V. 2010, Radiophysics and Quantum Electronics, 53, 623Google Scholar

  • Belikovich V. V., Benediktov E. A., Getmantsev G. G., Komrakov G. P., Ignat’ev Yu. A. 1975, JETP Letters, 22, 497Google Scholar

  • Belikovich V. V., Benediktov E. A., Tolmacheva A. V. 1993, Geomagnetism and Aeronomy (English translation), 34, 115Google Scholar

  • Belikovich V. V., Benediktov E. A., Goncharov N. P., Tolmacheva A. V. 1996, Geomagnetism and Aeronomy (English translation), 35, 490Google Scholar

  • Belikovich V. V., Benediktov E. A., Tolmacheva A. V., Bakhmet’eva N. V. 2002. Ionospheric Research by Means of Artificial Periodic Irregularities, Copernicus GmbH, 2002, Katlenburg-Lindau, 160 pp.Google Scholar

  • Djuth F. T., Groves K. M., Elder J. H. et al. 1997, J. Geophys. Res., 102, 24023CrossrefGoogle Scholar

  • Fejer J. A., Djuth F. T., Gonzales C. A. 1984, J. Geophys. Res., 89, 9145CrossrefGoogle Scholar

  • Grebovsky J. M., Goldberg R. A., Pesnell W. D. 1998, J. Atmos. Sol.-Terr. Phys., 60, 607Google Scholar

  • Gerding M., Alpers M., Hoffner J., von Zahn U. 2001, Ann. Geophys., 19, 47CrossrefGoogle Scholar

  • Mathews J. D. 1998, J. Atmos. Sol.-Terr. Phys., 60, 413Google Scholar

  • Kagan L. M., Bakhmet’eva N. V., Belikovich V. V. et al. 2002. Radio Sci., 37, 1106Google Scholar

  • Rietveld M. T., Turunen E., Matveinen H. et al. 1996. Ann. Geophys., 14, 1437CrossrefGoogle Scholar

  • Rietveld M. T., Goncharov N. P. 1998, Adv. Space Res., 21, 693CrossrefGoogle Scholar

  • Tolmacheva A. V., Bakhmet’eva N. V., Vyakhirev V. D. et al. 2011, Radiophysics and Quantum Electronics, 54, 365CrossrefGoogle Scholar

  • Whitehead J. D. 1989, J. Atmos. Terr. Phys., 51, 401CrossrefGoogle Scholar

About the article

Received: 2012-11-13

Accepted: 2012-11-28

Published Online: 2017-02-18

Published in Print: 2013-03-01


Citation Information: Open Astronomy, Volume 22, Issue 1, Pages 15–23, ISSN (Online) 2543-6376, DOI: https://doi.org/10.1515/astro-2017-0143.

Export Citation

© 2013 N. V. Bakhmetieva et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in