Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Astronomy

formerly Baltic Astronomy

Editor-in-Chief: Barbuy, Beatriz


IMPACT FACTOR 2018: 0.350

CiteScore 2018: 0.24

SCImago Journal Rank (SJR) 2018: 0.202
Source Normalized Impact per Paper (SNIP) 2018: 0.144

ICV 2018: 120.66

Open Access
Online
ISSN
2543-6376
See all formats and pricing
More options …
Volume 24, Issue 2

Issues

On Equilibrium Figures of Particle Clouds around the Sun and Stars

B. P. Kondratyev
  • Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Universitetskij prospect 13, Moscow 119992, Russian Federation
  • The Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, St. Petersburg
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ N. G. Trubitsina
Published Online: 2017-02-18 | DOI: https://doi.org/10.1515/astro-2017-0217

Abstract

Equilibrium figures of cold gas-dust (or cometary) clouds are studied in a more general setting than the classical Roche problem. The cloud is considered to be under the influence of gravitational attraction of the central star and the tidal field of the Galaxy. Our analysis also takes into account the centrifugal forces due to the rotation of the cloud, which moves around the center of the stellar system together with the star. The limit equilibrium figure is found to have three planes of symmetry and to be shaped like a “lemon” with lateral swellings and two singular points. The shape of this figure and its cusp angles in the planes of two main sections are calculated. The average density inside the equilibrium figure is shown to be almost exactly equal to the average density of matter in the Galaxy. This coincidence cannot be accidental and means that equilibrium figures with the critical level of the total surface potential fill the entire volume of the Galaxy. A possible consequence is that the cometary clouds of neighboring stars in the Galaxy may touch each other (or even intersect because of the presence of dark matter). Hence stars may exchange comets and part of the comets in the Solar System may belong to other stars.

Keywords: celestial mechanics; Galaxy: solar neighborhood

REFERENCES

  • Antonov V. A., Baranov A. S. 2009, Astrophysica, 52, 435Google Scholar

  • Breiter S., Fouchard M., Ratajczak R. 2008, MNRAS, 383, 200Google Scholar

  • Caimmi R. 1980, Ap&SS, 71, 415Google Scholar

  • Chandrasekhar S. 2005, Principles of Stellar Dynamics, Dover, New YorkGoogle Scholar

  • Emelyanenko V. V., Asher D.J., Bailey M. E. 2007, MNRAS, 381, 779Google Scholar

  • Ernst A., Just A. 2013, MNRAS, 429, 2953Google Scholar

  • Hills J. G. 1981, Astron. J., 86, 1730Google Scholar

  • Jeans J. H. 1928, Astronomy and Cosmogony, Cambridge Univ. Press, CambridgeGoogle Scholar

  • King A. R. 2002, Introduction to Classical Stellar Dynamics (In Russian, Translated from English), Editorial URSS, MoscowGoogle Scholar

  • Kondratyev B. P. 1989, Dynamics of Gravitating Ellipsoidal Figures, Nauka, MoscowGoogle Scholar

  • Kondratyev B. P. 2003, The Potential Theory and Equilibrium Figures, RHD, Moscow-IzhevskGoogle Scholar

  • Kondratyev B. P. 2014, MNRAS, 442, 1755Google Scholar

  • Kondratyev B. P., Trubitsina N. G. 2013, Astron. Nachr., 334, 879Google Scholar

  • Kuijken K., Gilmore G. 1989, MNRAS, 239, 605Google Scholar

  • Nielsen K. E., Gull T. R., Vieira Kober G. 2005, ApJS, 157, 138Google Scholar

  • Ogorodnikov K. F. 1958, Dynamics of Stellar Systems, Fizmatgiz, MoscowGoogle Scholar

  • Olling R. P., Merrifield M. R. 1998, MNRAS, 297, 943Google Scholar

  • Ossipkov L. P. 2006, Astron. Reports, 50, 116Google Scholar

  • Rastorguev S. A., Surdin V. G. 1978, Astron. Circ., 1016, 3Google Scholar

  • Roche E. 1879, Essai sur la Constitution et l’Origine du Système solaire, Mèm. Acad. Sci. de Montpellier, Section Sciences, vol. VIIIGoogle Scholar

  • Safronov V. S. 1969, Evolution of Protoplanetary Cloud and Formation of Earth and Planets, Nauka, MoscowGoogle Scholar

  • Subbotin M. F. 1949, Course of Celestial Mechanics, GITTL, Moscow-LeningradGoogle Scholar

About the article

Received: 2015-03-25

Accepted: 2015-04-20

Published Online: 2017-02-18

Published in Print: 2015-06-01


Citation Information: Open Astronomy, Volume 24, Issue 2, Pages 176–184, ISSN (Online) 2543-6376, DOI: https://doi.org/10.1515/astro-2017-0217.

Export Citation

© 2015 B. P. Kondratyev et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in