Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Astronomy

formerly Baltic Astronomy

Editor-in-Chief: Barbuy, Beatriz


IMPACT FACTOR 2018: 0.350

CiteScore 2018: 0.24

SCImago Journal Rank (SJR) 2018: 0.202
Source Normalized Impact per Paper (SNIP) 2018: 0.144

ICV 2017: 121.03

Open Access
Online
ISSN
2543-6376
See all formats and pricing
More options …
Volume 25, Issue 4

Issues

Mathematical Problems in Creating Large Astronomical Catalogs

M. E. Prokhorov
  • Sternberg Astronomical Institute, M. V. Lomonosov Moscow State University, Universitetsky prosp. 13, Moscow 119992, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. I. Zakharov
  • Sternberg Astronomical Institute, M. V. Lomonosov Moscow State University, Universitetsky prosp. 13, Moscow 119992, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ N. L. Kroussanova
  • Sternberg Astronomical Institute, M. V. Lomonosov Moscow State University, Universitetsky prosp. 13, Moscow 119992, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. S. Tuchin
  • Sternberg Astronomical Institute, M. V. Lomonosov Moscow State University, Universitetsky prosp. 13, Moscow 119992, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. V. Kortunov
Published Online: 2017-03-09 | DOI: https://doi.org/10.1515/astro-2017-0259

Abstract

The next stage after performing observations and their primary reduction is to transform the set of observations into a catalog. To this end, objects that are irrelevant to the catalog should be excluded from observations and gross errors should be discarded. To transform such a prepared data set into a high-precision catalog, we need to identify and correct systematic errors. Therefore, each object of the survey should be observed several, preferably many, times. The problem formally reduces to solving an overdetermined set of equations. However, in the case of catalogs this system of equations has a very specific form: it is extremely sparse, and its sparseness increases rapidly with the number of objects in the catalog. Such equation systems require special methods for storing data on disks and in RAM, and for the choice of the techniques for their solving. Another specific feature of such systems is their high “stiffiness”, which also increases with the volume of a catalog. Special stable mathematical methods should be used in order not to lose precision when solving such systems of equations. We illustrate the problem by the example of photometric star catalogs, although similar problems arise in the case of positional, radial-velocity, and parallax catalogs.

Keywords: methods: data analysis; catalogs: photometric

REFERENCES

  • Berry M. W. 1992, International Journal of High Performance Computing Applications, 6, 13Google Scholar

  • Berry M., Mezher D., Philippe B., Sameh A. 2003, Parallel computation of the singular value decomposition (Research Report), RR-4694, INRIA, inria-00071892Google Scholar

  • Bertin E., Arnouts S. 1996, A&AS, 117, 393Google Scholar

  • Brand M. 2006, Linear Algebra and its Applications, 415, 20Google Scholar

  • Cousins A. W. J. 1985, MNASSA, 44, 10Google Scholar

  • Forsite G. E., Malcolm M. A., Moler C. B. 1977, Computer Methods for Mathematical Computations, Prentice-Hall Inc.Google Scholar

  • Gorynya N. A., Rastorguev A. S., Samus N. N. 1996, Astronomy Letters, 22, 33Google Scholar

  • Jordi C., Gebran M., Carrasco J. M. et al. 2010, A&A, 523, A48Google Scholar

  • Kontoghiorghes E. J. 2005, Handbook of Parallel Computing and Statistics, Chapman & Hall/CRC, London, New YorkGoogle Scholar

  • Kornilov V. G., Volkov I. M., Zakharov A. I. et al. 1991, Catalogue of WBVR-magnitudes of bright stars of the northern sky, Moscow University, Moscow, RussiaGoogle Scholar

  • Kornilov V., Mironov A., Zakharov A. 1996, Baltic Astronomy, 5, 379Google Scholar

  • Lindegren L., Babusiaux C., Bailer-Jones C. et al. 2008, in A Giant Step: from Milli- to Micro-arcsecond Astrometry (Proc. IAU Symp. 248), IAU, p. 217Google Scholar

  • LSST Science Collaboration 2009, eprint arXiv:0912.0201Google Scholar

  • Manfroid J. 1996, A&AS, 118, 391Google Scholar

  • Popov S. B., Prokhorov M. E. 2006, MNRAS, 367, 732Google Scholar

  • Romanishin W. 2014. An Introduction to Astronomical Photometry Using CCDs, CreateSpace Independent Publishing PlatformGoogle Scholar

  • Samus N. N., Kazarovets E. V., Pastukhova E. N. et al. 2009, PASP, 121, 1378Google Scholar

  • Shakura N. I., Postnov K. A., Prokhorov M. E. 1998, A&A, 331, L37Google Scholar

  • Sil'chenko O. K., Proshina, I. S., Shulga, A. P., Koposov S. E. 2012, MNRAS, 427, 790Google Scholar

  • Stubbs C. W., Doherty P., Cramer C. et al. 2010, ApJS, 191, 376Google Scholar

  • Tobin W. 1993, in Stellar Photometry – Current Techniques and Future Developments (Proc. IAU Coll. 136), Cambridge Univ. Press, Cambridge, p. 304Google Scholar

  • Yang D., Ma Z., Buja A. 2014, Journal of Computational and Graphical Statistics, 23, 923 (eprint arXiv:1112.2433)CrossrefGoogle Scholar

  • Zakharov A. I., Mironov A. V., Prokhorov M. E. et al. 2013a, Astron. Rep., 57, 195Google Scholar

  • Zakharov A. I., Mironov A. V., Prokhorov M. E. et al. 2013b, AN, 334, 828Google Scholar

About the article

Received: 2016-11-22

Accepted: 2016-12-14

Published Online: 2017-03-09

Published in Print: 2016-12-01


Citation Information: Open Astronomy, Volume 25, Issue 4, Pages 400–410, ISSN (Online) 2543-6376, DOI: https://doi.org/10.1515/astro-2017-0259.

Export Citation

© 2016 M. E. Prokhorov et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in