Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Astronomy

formerly Baltic Astronomy

Editor-in-Chief: Barbuy, Beatriz

1 Issue per year


IMPACT FACTOR 2017 (Baltic Astronomy): 0.417
5-year IMPACT FACTOR (Baltic Astronomy): 0.486

CiteScore 2017: 0.16

SCImago Journal Rank (SJR) 2017: 0.131
Source Normalized Impact per Paper (SNIP) 2017: 0.109

ICV 2017: 121.03

Open Access
Online
ISSN
2543-6376
See all formats and pricing
More options …
Volume 26, Issue 1

Issues

A precise mass function in the excursion set approach

Antonino Del Popolo
  • Dipartimento di Fisica e Astronomia, University Of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
  • INFN sezione di Catania, Via S. Sofia 64, I- 95123 Catania, Italy
  • International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59012-970 Natal, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-27 | DOI: https://doi.org/10.1515/astro-2017-0004

Abstract

In the present paper, using previous results from Del Popolo papers, we show how the mass function evolution can be obtained in the framework of a spherical collapse model, which has been modified to take account of dynamical friction, the cosmological constant, and angular momentum which proto-structures acquire through tidal interaction with neighbouring ones. We found an improved barrier which is in excellent agreement with simulations. The quoted barrier is used to calculated the mass function. In the case of the ΛCDM paradigm, our mass function is in good agreement (within some %) with the mass function of Klypin’s Bolshoi simulation for the virial mass range 5 × 109 − 5 × 1014h−1M, and 0 ≾ z ≿ 10. Similar agreement is obtained with Tinker’s mass function, and Castorina’s simulations.

Keywords : cosmology: theory - large scale structure of Universe - galaxies: formation

References

  • Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C. et al., arXiv:1502.01589Google Scholar

  • Antonuccio-Delogu, V., Colafrancesco, S. 1994, ApJ, 427, 72-85.Google Scholar

  • Astashenok, A. V., Del Popolo, A. 2012, Classical and Quantum Gravity 29(1), 1-10.Google Scholar

  • Audit, E., Teyssier, R., Alimi, J. M. 1997, A& A, 325, 439-449.Google Scholar

  • Bardeen, J.M., Bond, J.R., Kaiser, N., Szalay, A.S. 1986, ApJ, 304(1), 15-61.Google Scholar

  • Bhattacharya, S., Heitmann, K., White, M., Lukic, Z., Wagner, C. et al., 2011, ApJ, 732(2), 122-139.Google Scholar

  • Bond, J.R., Cole, S., Efsthatiou, G., Kaiser, N. 1991, ApJ, 379, 440-460.Google Scholar

  • Cardone, V. M., Leubner, and Del Popolo, A., 2011a, MNRAS 414, 2265Google Scholar

  • Cardone, Del Popolo, A., Tortora, C., and N.R. Napolitano, N. R., 2011b, MNRAS 416, 1822Google Scholar

  • Cardone, V. F., Del Popolo, A. 2012, MNRAS, 427, 3176-3187.Google Scholar

  • Castorina, E., Paranjape, A., Hahn, O. P., Sheth, R. K. 2016, arXiv:1611.03619Google Scholar

  • Cohn, J. D., White, M. 2008, MNRAS 385(4), 2025-2033.Google Scholar

  • Colafrancesco, S., Antonuccio, V. & Del Popolo, A. 1995, ApJ 455, 32-36.Google Scholar

  • Courtin, J., Rasera, Y., Alimi, J. M., Corasaniti, P. S., Boucher, V. et al., 2011, MNRAS, 410(3), 1911-1931.Google Scholar

  • Crocce, M., Fosalba, P., Castander, F. J., Gaztanaga, E. 2010, MNRAS, 403(3), 1353-1367.Google Scholar

  • Del Popolo, A., Gambera, M., 1996 A&A 308, 373Google Scholar

  • Del Popolo, A., Gambera, M. 1997, A&A, 321, 691-695.Google Scholar

  • Del Popolo, A., Gambera, M. 1998, A&A, 337, 96-104.Google Scholar

  • Del Popolo, A., Gambera, M. 1999, A&A, 344, 17-26.Google Scholar

  • Del Popolo, A., Gambera, M., Recami, E., Spedicato, E., 2000 A&A 353, 427Google Scholar

  • Del Popolo, A., Gambera, M. 2000, A&A, 357, 809-815.Google Scholar

  • Del Popolo, A., Ercan, E. N., Xia, Z. Q. 2001, AJ, 122(1), 487-495.Google Scholar

  • Del Popolo, A. 2002a, MNRAS, 337(2), 529-539.Google Scholar

  • Del Popolo, A., 2002b, A&A, 387, 759-777.Google Scholar

  • Del Popolo, A. 2002c, MNRAS, 336(1), 81-90.Google Scholar

  • Del Popolo, A. 2006a, ApJ, 637(1), 12-18.Google Scholar

  • Del Popolo, A. 2006b, A&A 454(1), 17-26.Google Scholar

  • Del Popolo, A. 2007, ARep., 51(3), 169-196.Google Scholar

  • Del Popolo, A., Yesilyurt, I. S. 2007, ARep, 51(9), 709-734.Google Scholar

  • Del Popolo, A., Kroupa, P. 2009, A&A, 502(3), 733-747.Google Scholar

  • Del Popolo, A. 2009, ApJ, 698, 2093-2113.Google Scholar

  • Del Popolo, A. 2010, MNRAS, 408(3), 1808-1817.Google Scholar

  • Del Popolo, A. 2011, JCAP, 7, 14-30.Google Scholar

  • Del Popolo, A., 2012a, MNRAS 419(2), 971-984.Google Scholar

  • Del Popolo, A., 2012b, MNRAS 424(1), 38-51.Google Scholar

  • Del Popolo, A., Cardone, V. F., Belvedere, G. 2013, MNRAS, 429, 1080-1087.Google Scholar

  • Del Popolo, A., Pace, F., Lima, J. A. S 2013a, MNRAS,430(1), 628-637.Google Scholar

  • Del Popolo, A., Pace, F., Lima, J. A. S 2013b, IJMPD, 22(8), 1350038.Google Scholar

  • Del Popolo, A., Pace, F., Maydanyuk, S. P., Lima, J. A. S., Jesus, J. F., 2013c, PhRvD..87d3527Google Scholar

  • Del Popolo, A. 2013, Proceedings of IX Mexican School on Gravitation and Mathematical Physics, Cosmology for the XXIst Century (03-07 December 2012, Puerto Vallarta, México), AIP Conf. Proc., 1548, 2-63.Google Scholar

  • Del Popolo, A. 2014, Int. J. Mod. Phys. D, 23, 1430005.Google Scholar

  • Del Popolo, A., Hiotelis, N. 2014, JCAP, 1, 047.Google Scholar

  • Del Popolo A., Lima J. A. S., Fabris J. C., Rodrigues, D. C. 2014, JCAP, 04, 021.Google Scholar

  • Del Popolo, A., Le Delliou, M., 2017, Galaxies, 5(1), 17-63.Google Scholar

  • Efstathiou, G., Frenk, C.S., White, S.D.M., Davis M. 1988, MNRAS 235, 715-748.Google Scholar

  • Fakhouri, O., Ma, C. P. 2008, MNRAS, 386(2), 577-592.Google Scholar

  • Feyereisen, M. R., Ando, S., Lee, S. K. 2015, arXiv: 1506.05118Google Scholar

  • Flores, R.A., Primack, J. R. 1994, ApJL, 427, L1-L4.Google Scholar

  • Furlanetto, S.R., McQuinn, M., Hernquist, L. 2006, MNRAS, 365(1), 115-126.Google Scholar

  • Gross, M.A.K., Sommerville, R.S., Primack, J.R., Holtzman, J., Klypin A. 1998, MNRAS 301(1), 81-94.Google Scholar

  • Haiman, Z., Mohr, J. J., Holder, G. P. 2001, ApJ, 553(2), 545-561.Google Scholar

  • Haiman, Z., Loeb, A. 2001, ApJ, 552(2), 459-463.Google Scholar

  • Hiotelis, N., Del Popolo, A. 2006, Ap&SS, 301(1-4), 167-177.Google Scholar

  • Hiotelis, N., Del Popolo, A. 2013, MNRAS.436(1), 163-178.Google Scholar

  • Holder, G., Haiman Z., Mohr, J. 2001, ApJ, 560(2), L111-L114.Google Scholar

  • Jenkins, A., et al., 2001, MNRAS 321, 372Google Scholar

  • Klypin, A., Trujillo-Gomez, S., Primack, J. 2011, ApJ, 740(2), 102-119.Google Scholar

  • Komatsu, E., Smith, K. E., Dunkley, J., Bennett, C. L., Gold, B., Hinshaw, G. et al. 2011, Astrophys. J. Suppl., 192, 18-65.Google Scholar

  • Lacey, C., Cole, S. 1993, MNRAS, 262(3), 627-649.Google Scholar

  • Lukic, Z., Heitmann, K., Habib, S., Bashinsky, S., Ricker P. M. 2007, ApJ 671, 1160-1181, arXiv: 0702360Google Scholar

  • Maggiore, M., Riotto, A., 2010, ApJ, 717(1), 515-525.Google Scholar

  • Majumdar, S., Mohr, J. J. 2002, arXiv:astro-ph/0208002Google Scholar

  • Moore, B., Quinn, T., Governato, F., Stadel, J., Lake, G. 1999, MNRAS 310(4), 1147-1152.Google Scholar

  • Murray, S. G., Power, C., and Robotham, A. S. G. 2013, Astronomy and Computing, 3, 23-34.Google Scholar

  • Pace, F., Batista, R. C., Del Popolo, A. 2014, MNRAS.445(1), 648-659.Google Scholar

  • Peebles, P. J. E. 1990, ApJ, 365, 27-36.Google Scholar

  • Press, W., Schecter P. 1974, ApJ, 187, 425-438.Google Scholar

  • Reed, D., Gardner, J., Quinn, T., Stadel, J., Fardal, M., Lake, G. et al. 2003, MNRAS 346, 565-572.Google Scholar

  • Reed, D., Bower, R., Frenk, C. S., Jenkins, A., Theuns, T. 2007, MNRAS, 374(1), 2-15.Google Scholar

  • Reischke, R., Pace, F., Meyer, S., Schäfer, B. M. 2016a, MNRAS 463(1), 429-440.Google Scholar

  • Reischke, R., Pace, F., Meyer, S., Schäfer, B. M. 2016b, arXiv:1612.04275Google Scholar

  • Sheth, R. K., Mo, H. J., Tormen, G. 2001, MNRAS, 323(1), 1-12.Google Scholar

  • Sheth, R. K., Tormen, G., 2002, MNRAS, 329(1), 61-75.Google Scholar

  • Spedicato, E., Bodon E., Del Popolo A., Mahdavi-Amiri N. 2003, 4OR, 1(1), 51-66.Google Scholar

  • Spergel, D. N., Verde, L., Peiris, H. V., Komatsu, E., Nolta, M. R., Bennett, C. L. et al. 2003, Astrophys. J. Suppl., 148, 175-194.Google Scholar

  • Tinker, J., Kravtsov, A. V., Klypin, A., Abazajian, K., Warren, M., Yepes, G. et al. 2008, ApJ, 688, 709-728.Google Scholar

  • Velten, H.E.S., vom Marttens, R.F., Zimdahl W., 2014, Eur. Phys. J. C, 74, 3160-3168.Google Scholar

  • Watson, W. A., Iliev, I. T., D’Aloisio, A., Knebe, A., Shapiro, P. R., Yepes, G. 2013, MNRAS, 433(2), 1230-1245.Google Scholar

  • Weinberg, S., 1989, Reviews of Modern Physics, 61, 1-23.Google Scholar

  • Weller, J., Battye, R., & Kniessl, R. 2001, arXiv:astro-ph/0110353Google Scholar

  • White, S.D.M., 2002, ApJS, 143, 241Google Scholar

  • Zhang, J., Fakhouri, O., Ma, C. P., 2008, MNRAS, 389, 1521-1538.Google Scholar

About the article

Received: 2017-03-09

Accepted: 2017-05-04

Published Online: 2017-06-27

Published in Print: 2017-04-25


Citation Information: Open Astronomy, Volume 26, Issue 1, Pages 26–34, ISSN (Online) 2543-6376, DOI: https://doi.org/10.1515/astro-2017-0004.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in