Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Astronomy

formerly Baltic Astronomy

1 Issue per year


IMPACT FACTOR 2017 (Baltic Astronomy): 0.417
5-year IMPACT FACTOR (Baltic Astronomy): 0.486

CiteScore 2017: 0.16

SCImago Journal Rank (SJR) 2017: 0.131
Source Normalized Impact per Paper (SNIP) 2017: 0.109

Open Access
Online
ISSN
2543-6376
See all formats and pricing
More options …
Volume 26, Issue 1

Issues

Hierarchical structure of the interstellar molecular clouds and star formation

Alexander E. Dudorov
  • Corresponding author
  • Chelyabinsk State University, 129 Bratiev Kashirinykh Str., Chelyabinsk 454001, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergey A. Khaibrakhmanov
  • Ural Federal University, 19 Mira Str., Ekaterinburg 620000, Russian Federation
  • Chelyabinsk State University, 129 Bratiev Kashirinykh Str., Chelyabinsk 454001, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/astro-2017-0428

Abstract

Properties of the hierarchical structures of interstellar molecular clouds are discussed. Particular attention is paid to the statistical correlations between velocity dispersion and size, and between the magnetic field strength and gas density. We investigate the formation of some hierarchical structures with the help of numerical MHD simulations using the ENLIL code. The simulations show that the interstellar molecular filaments with parallel magnetic field and molecular cores can form via the collapse and fragmentation of cylindrical molecular clouds. The parallelmagnetic field halts the radial collapse of the cylindrical cloud maintaining its nearly constant radius ~0.1 pc. The observed filaments with perpendicularmagnetic field can form as a result of themagnetostatic contraction of oblate molecular clouds under the action of Alfvén and MHD turbulence. The theoretical density profiles are fitted with the Plummer-like function and agree with observed profiles of the filaments in Gould’s Belt. The characteristics of molecular cloud cores found in our simulations are in agreement with observations.

Keywords : Instabilities; Magnetic fields; Magnetohydrodynamics (MHD); Stars; formation; Galaxies; ISM

References

  • André, Ph. 2006, In: Elmegreen B. G. (Ed.), Proceedings IAU Symposium No. 237 (14-18 August 2006, Praha, Czech Republic), Cambridge University Press, 132-140.Google Scholar

  • André, P., Di Francesco, J., Ward-Thompson, D., Inutsuka, S.-I., Pudritz, R. E., Pineda, J. E. 2014, From Filamentary Networks to Dense Cores in Molecular Clouds: Toward a New Paradigm for Star Formation, In: Henrik Beuther, Ralf S. Klessen, Cornelis P. Dullemond, and Thomas Henning (Eds.), Protostars and Planets VI (Univ. of Arizona Press, Tucson), 914, 25-51.Google Scholar

  • André, P., Reveret, V., Könyves, V., Arzoumanian, D., Tige, J., Gallais, O., et al., 2016, A&A, 592, A54.Google Scholar

  • Chapman, N.L., Goldsmith, P.F., Pineda, J.L., Clemens, D.P., Li, D., Krčo, M. 2011, ApJ, 741, 21.Google Scholar

  • Chandrasekhar, S. and Fermi, E., 1953, ApJ, 118, 116-141.Google Scholar

  • Cox, N.L.J., Arzoumanian, D., André, Ph., Rygl, K.L.J., Prusti, T., Men’shchikov, A., et al. 2016, A&A, 590, A110. Google Scholar

  • Dudorov, A. E. and Sazonov, Y. V. 1987, Nauchnye Inf., 63, 68-86.Google Scholar

  • Dudorov, A.E. 1990, Itogi Nauki Tekh., Ser. Astron., 39, 77 (in Russian).Google Scholar

  • Dudorov, A.E. 1991, Sov.Astron., 35, 342-348.Google Scholar

  • Dudorov, A.E., Zhilkin, A.G., Kuznetsov, O.A. 1999, Matem. Modelir., 11, 101-116 (in Russian).Google Scholar

  • Elmegreen, B.G. 1989, ApJ, 338, 178-196.Google Scholar

  • Kainulainen, J., Hacar, A., Alves, J., Beuther, H., Bouy, H., Tafalla, M. 2016, A&A, 586, A27.Google Scholar

  • Konyves, V., André, Ph., Men’shchikov, A., Palmeirim, P., Arzoumanian, D., Schneider, N., et al. 2015, A&A, 584, A91.Google Scholar

  • Larson, R.B., 1981, Mon. Not. R. Astr. Soc., 194, 809-826.Google Scholar

  • Palmeirim, P., André, Ph., Kirk, J., Ward-Thompson, D., et al. 2013, A&A, 550, A38.Google Scholar

  • Panopoulou, G. V., Psaradaki, I., Skalidis, R., Tassis, K., Andrews, J. J., 2017, MNRAS, 466, 2529-2541.Google Scholar

  • Roccatagliata, V., Dale, J.E., Ratzka, T., Testi, L., Burkert, A., Koepferl, C., et al. 2015, A&A, 584, A119.Google Scholar

  • Scalo, J. M. 1985, In: Black D.C. and Mathews M.S. (Eds.), Protostars and Planets II (University of Arizona Press, Tucson), 201-296.Google Scholar

  • Scalo, J. M. 1987, In: Proceedings of the Interstellar processes Symposium (July 1-7, 1986, Grand Teton National Park, WY), D. Reidel Publishing Co., Dordrecht, 349-392.Google Scholar

  • Scoville, N. Z., Sanders, D.B. 1987, In: Proceedings of the Interstellar processes Symposium (July 1-7, 1986, Grand Teton National Park, WY), D. Reidel Publishing Co., Dordrecht, 21-50.Google Scholar

  • Spitzer, L. 1978, Physical Processes in the Interstellar Medium, New York Wiley-Interscience.Google Scholar

  • Vainshtein, S.I. 1983, Magnetic Fields in Space, Nauka, Moscow (in Russian).Google Scholar

  • Ward-Thompson, D., Pattle, K., Bastien, P., Furuya, S., et al. 2017, ApJ, 842, 66.Google Scholar

  • Yamaguchi, N., Mizuno, N., Saito, H., Matsunaga, K., Mizuno, A., Ogawa, H., et al. 1999, PASJ, 51, 775-790.Google Scholar

  • Zhilkin, A.G., Pavlyuchenkov, Ya.N., Zamozdra, S.N. 2009, Astron. Rep., 53, 590-604.Google Scholar

About the article

Received: 2017-09-25

Accepted: 2017-11-16

Published Online: 2017-12-29

Published in Print: 2017-12-20


Citation Information: Open Astronomy, Volume 26, Issue 1, Pages 285–292, ISSN (Online) 2543-6376, DOI: https://doi.org/10.1515/astro-2017-0428.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in